Project description:Raghunathan2009 - Genome-scale metabolic
network of Salmonella typhimurium (iRR1083)
This model is described in the article:
Constraint-based analysis of
metabolic capacity of Salmonella typhimurium during
host-pathogen interaction.
Raghunathan A, Reed J, Shin S,
Palsson B, Daefler S.
BMC Syst Biol 2009; 3: 38
Abstract:
BACKGROUND: Infections with Salmonella cause significant
morbidity and mortality worldwide. Replication of Salmonella
typhimurium inside its host cell is a model system for studying
the pathogenesis of intracellular bacterial infections.
Genome-scale modeling of bacterial metabolic networks provides
a powerful tool to identify and analyze pathways required for
successful intracellular replication during host-pathogen
interaction. RESULTS: We have developed and validated a
genome-scale metabolic network of Salmonella typhimurium LT2
(iRR1083). This model accounts for 1,083 genes that encode
proteins catalyzing 1,087 unique metabolic and transport
reactions in the bacterium. We employed flux balance analysis
and in silico gene essentiality analysis to investigate growth
under a wide range of conditions that mimic in vitro and host
cell environments. Gene expression profiling of S. typhimurium
isolated from macrophage cell lines was used to constrain the
model to predict metabolic pathways that are likely to be
operational during infection. CONCLUSION: Our analysis suggests
that there is a robust minimal set of metabolic pathways that
is required for successful replication of Salmonella inside the
host cell. This model also serves as platform for the
integration of high-throughput data. Its computational power
allows identification of networked metabolic pathways and
generation of hypotheses about metabolism during infection,
which might be used for the rational design of novel
antibiotics or vaccine strains.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180058.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilent’s Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilent’s Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses.
Project description:Small RNA isolated from synovial fluid of the metacarpophalangeal joints of horses. Horses either had minimal signs of osteoarthritis based on macroscopic and microscopic joint scoring or early (mild) osteoarthritis. Differential expression of small non-coding RNAs was undertaken.
Project description:Sixteen severly RAO (Recurrent Airway Obstruction) affected horses were studied. All RAO affected male horses were hybridized with GSM1332974 (Thoroughbred male 1, male reference), and the female horses were with GSM1332975 (Thoroughbred female 2, female reference). Finally results are compared with GSE55266 and two other control horses (SPA-H1-3 and SPA-H1-5) and relatively novel RAO CNVs were reported.
Project description:Objective: The objective of this study was to characterize extracellular vesicles (EVs) in plasma and synovial fluid obtained from horses with and without naturally occurring post-traumatic osteoarthritis (PTOA). Animals (Samples): EVs were isolated from plasma and synovial fluid from horses with (n = 6) and without (n = 6) PTOA. Methods: Plasma and synovial fluid EVs were characterized with respect to quantity, size, and surface markers. Small RNA sequencing was performed and differentially expressed miRNAs underwent bioinformatic analysis to identify putative targets and to explore potential associations with specific biological processes. Results: Plasma and synovial fluid samples from horses with PTOA had a significantly higher proportion of exosomes and a lower proportion of microvesicles compared to horses without PTOA. Small RNA sequencing revealed several differentially expressed miRNAs including miR-144, miR-219-3p, and miR-199a-3p in plasma and miR-199a-3p, miR-214, and miR-9094 in synovial fluid EVs. Bioinformatics analysis of the differentially expressed miRNAs highlighted their potential role in fibrosis, differentiation of chondrocytes, apoptosis, and inflammation pathways in PTOA. Clinical Relevance: We have identified dynamic molecular changes in small non-coding signatures of plasma and synovial fluid EVs in horses with naturally occurring PTOA. These findings could serve to identify promising biomarkers in the pathogenesis of PTOA, to facilitate the development of targeted therapies, and to aid in establishing appropriate translational models of PTOA.
Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilentâs Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilentâs Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses. Three healthy, gelding warmblood horses between 9 and 17 yr were selected. 6 samples were collected containing 3 samples before exercise and 3 samples after exercise
Project description:Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.investigated by determining changes in transcript profiles when aerobic steady-state cultures were depleted of air.
Project description:Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.
2008-02-01 | GSE9693 | GEO
Project description:Salmonella Typhi strains isolated from Patients in Switzerland
Project description:In this study, we have defined the NsrR regulon in Salmonella enterica sv. Typhimurium 14028s using a transcriptional microarray. Wild-type and nsrR mutant S. Typhimurium were grown aerobically to early log-phase (OD600~0.5) at 37C in LB medium. Total RNA was isolated from three independent cultures of both strains and interrogated on a PCR product array representing almost all ORFs.