Project description:Axon growth requires long-range transport of organelles, but how these cargoes recruit their motors and how their traffic is regulated are not fully resolved. In this paper, we identify a new pathway based on the class III PI3-kinase (PIK3C3), ankyrin-B (AnkB), and dynactin, which promotes fast axonal transport of synaptic vesicles, mitochondria, endosomes, and lysosomes. We show that dynactin associates with cargo through AnkB interactions with both the dynactin subunit p62 and phosphatidylinositol 3-phosphate (PtdIns(3)P) lipids generated by PIK3C3. AnkB knockout resulted in shortened axon tracts and marked reduction in membrane association of dynactin and dynein, whereas it did not affect the organization of spectrin-actin axonal rings imaged by 3D-STORM. Loss of AnkB or of its linkages to either p62 or PtdIns(3)P or loss of PIK3C3 all impaired organelle transport and particularly retrograde transport in hippocampal neurons. Our results establish new functional relationships between PIK3C3, dynactin, and AnkB that together promote axonal transport of organelles and are required for normal axon length.
Project description:Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD.
Project description:Lysosomes robustly accumulate within axonal swellings at Alzheimer's disease (AD) amyloid plaques. However, the underlying mechanisms and disease relevance of such lysosome accumulations are not well understood. Motivated by these problems, we identified JNK-interacting protein 3 (JIP3) as an important regulator of axonal lysosome transport and maturation. JIP3 knockout mouse neuron primary cultures accumulate lysosomes within focal axonal swellings that resemble the dystrophic axons at amyloid plaques. These swellings contain high levels of amyloid precursor protein processing enzymes (BACE1 and presenilin 2) and are accompanied by elevated Aβ peptide levels. The in vivo importance of the JIP3-dependent regulation of axonal lysosomes was revealed by the worsening of the amyloid plaque pathology arising from JIP3 haploinsufficiency in a mouse model of AD. These results establish the critical role of JIP3-dependent axonal lysosome transport in regulating amyloidogenic amyloid precursor protein processing and support a model wherein Aβ production is amplified by plaque-induced axonal lysosome transport defects.
Project description:βII-spectrin is the generally expressed member of the β-spectrin family of elongated polypeptides that form micrometer-scale networks associated with plasma membranes. We addressed in vivo functions of βII-spectrin in neurons by knockout of βII-spectrin in mouse neural progenitors. βII-spectrin deficiency caused severe defects in long-range axonal connectivity and axonal degeneration. βII-spectrin-null neurons exhibited reduced axon growth, loss of actin-spectrin-based periodic membrane skeleton, and impaired bidirectional axonal transport of synaptic cargo. We found that βII-spectrin associates with KIF3A, KIF5B, KIF1A, and dynactin, implicating spectrin in the coupling of motors and synaptic cargo. βII-spectrin required phosphoinositide lipid binding to promote axonal transport and restore axon growth. Knockout of ankyrin-B (AnkB), a βII-spectrin partner, primarily impaired retrograde organelle transport, while double knockout of βII-spectrin and AnkB nearly eliminated transport. Thus, βII-spectrin promotes both axon growth and axon stability through establishing the actin-spectrin-based membrane-associated periodic skeleton as well as enabling axonal transport of synaptic cargo.
Project description:Many neuronal mRNAs are transported from cell bodies into axons and dendrites. Localized translation of the mRNAs brings autonomy to these processes that can be vast distances from the cell body. For axons, these translational responses have been linked to growth and injury signaling, but there has been little information about local function of individual axonally synthesized proteins. In the present study, we show that axonal injury increases levels of the mRNA encoding neural membrane protein 35 (NMP35) in axons, with a commensurate decrease in the cell body levels of NMP35 mRNA. The 3' untranslated region (3'UTR) of NMP35 is responsible for this localization into axons. Previous studies have shown that NMP35 protein supports cell survival by inhibiting Fas-ligand-mediated apoptosis; however, these investigations did not distinguish functions of the locally generated NMP35 protein. Using axonally targeted versus cell-body-restricted NMP35 constructs, we show that NMP35 supports axonal growth, and overexpression of an axonally targeted NMP35 mRNA is sufficient to increase axonal outgrowth.
Project description:Mammalian central nervous system (CNS) neurons do not regenerate after injury due to the inhibitory environment formed by the glial scar, largely constituted by myelin debris. The use of biomaterials to bridge the lesion area and the creation of an environment favoring axonal regeneration is an appealing approach, currently under investigation. This work aimed at assessing the suitability of three candidate polymers - poly(ε-caprolactone), poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) (11∶89 mol%) and poly(trimethylene carbonate) - with the final goal of using these materials in the development of conduits to promote spinal cord regeneration. Poly(L-lysine) (PLL) coated polymeric films were tested for neuronal cell adhesion and neurite outgrowth. At similar PLL film area coverage conditions, neuronal polarization and axonal elongation was significantly higher on P(TMC-CL) films. Furthermore, cortical neurons cultured on P(TMC-CL) were able to extend neurites even when seeded onto myelin. This effect was found to be mediated by the glycogen synthase kinase 3β (GSK3β) signaling pathway with impact on the collapsin response mediator protein 4 (CRMP4), suggesting that besides surface topography, nanomechanical properties were implicated in this process. The obtained results indicate P(TMC-CL) as a promising material for CNS regenerative applications as it promotes axonal growth, overcoming myelin inhibition.
Project description:Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1 -/-) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1 -/- mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1 -/- cerebral cortex. In addition, Klc1 -/- neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.
Project description:Axonal growth is essential for establishing neuronal circuits during brain development and for regenerative processes in the adult brain. Unfortunately, the extracellular signals controlling axonal growth are poorly understood. Here we report that a reduction in extracellular ATP levels by tissue-nonspecific alkaline phosphatase (TNAP) is essential for the development of neuritic processes by cultured hippocampal neurons. Selective blockade of TNAP activity with levamisole or specific TNAP knockdown with short hairpin RNA interference inhibited the growth and branching of principal axons, whereas addition of alkaline phosphatase (ALP) promoted axonal growth. Neither activation nor inhibition of adenosine receptors affected the axonal growth, excluding the contribution of extracellular adenosine as a potential hydrolysis product of extracellular ATP to the TNAP-mediated effects. TNAP was colocalized at axonal growth cones with ionotropic ATP receptors (P2X₇ receptor), whose activation inhibited axonal growth. Additional analyses suggested a close functional interrelation of TNAP and P2X₇ receptors whereby TNAP prevents P2X₇ receptor activation by hydrolyzing ATP in the immediate environment of the receptor. Furthermore inhibition of P2X₇ receptor reduced TNAP expression, whereas addition of ALP enhanced P2X₇ receptor expression. Our results demonstrate that TNAP, regulating both ligand availability and protein expression of P2X₇ receptor, is essential for axonal development.
Project description:Mature neurons have diminished intrinsic regenerative capacity. Axotomy of the peripheral branch of adult dorsal root ganglia (a "conditioning" lesion) triggers a transcription-dependent axon growth program. Here, we show that this growth program requires the function of the transcription factor Smad1. After peripheral axotomy, neuronal Smad1 is upregulated, and phosphorylated Smad1 accumulates in the nucleus. Both events precede the onset of axonal extension. Reducing Smad1 by RNA interference in vitro impairs axonal growth, and the continued presence of Smad1 is required to maintain the growth program. Furthermore, intraganglionic injection of BMP2 or 4, which activates Smad1, markedly enhances axonal growth capacity, mimicking the effect of a conditioning lesion. Thus, activation of Smad1 by axotomy is a key component of the transcriptional switch that promotes an enhanced growth state of adult sensory neurons.
Project description:Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, and neurons of the adult rat spinal cord and is induced around the injury site after spinal cord injury. We developed an antibody to RGMa that efficiently blocks the effect of RGMa in vitro. Intrathecal administration of the antibody to rats with thoracic spinal cord hemisection results in significant axonal growth of the corticospinal tract and improves functional recovery. Thus, RGMa plays an important role in limiting axonal regeneration after CNS injury and the RGMa antibody offers a possible therapeutic agent in clinical conditions characterized by a failure of CNS regeneration.