Fuel Ethanol Yeast Strains
Ontology highlight
ABSTRACT: Fuel ethanol is now considered a global energy commodity that is fully competitive with gasoline. We have determined genome copy number differences that are common to five industrially important fuel ethanol yeast strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. The fuel strains used were CAT1, BG1, PE2, SA1, and VR1 (note that two independent isolates were analyzed, denoted by "-1" and "-2"). These array-CGH data were compared with array-CGH data from nine other non-fuel industrial yeasts: An ale brewing strain ("Sc-ale"), four wine strains (GSY2A, GSY3A, GSY10A, GSY11B), and 4 bakers' yeast strains (GSY149, GSY150, GSY154, GSY155). Our results reveal significant amplifications of the telomeric SNO and SNZ genes only in the fuel strains, whose protein products are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that these amplifications allow these yeasts to grow efficiently, especially at high sugar concentrations, regardless of the presence or absence of either of the two vitamins. Our results reveal important genetic adaptations that have been selected for in the industrial environment, which may be required for the efficient fermentation of biomass-derived sugars from other renewable feedstocks. A strain or line experiment design type assays differences between multiple strains, cultivars, serovars, isolates, lines from organisms of a single species. Strain Name: fuel strains used for aCGH Strain_or_line_design
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Boris Stambuk
PROVIDER: E-GEOD-13875 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA