The molecular effects of cordycepin on RNA synthesis in Saccharomyces cerevisiae
Ontology highlight
ABSTRACT: Cordycepin (3â deoxyadenosine) is a biologically active compound that, when incorporated during RNA synthesis in vitro, provokes chain termination due to the absence of a 3â hydroxyl moiety. We were interested in the effects mediated by this drug in vivo and analysed its impact on RNA metabolism of yeast. Our results support the view that cordycepin-triphosphate (CoTP) is the toxic component that is limiting cell growth through inhibition of RNA synthesis. Unexpectedly, cordycepin treatment modulated 3â end heterogeneity of ACT1 and ASC1 mRNAs and rapidly induced extended transcripts derived from CYH2 and NEL025c loci. Moreover, cordycepin ameliorated the growth defects of poly(A) polymerase mutants and the pap1-1 mutation neutralized the effects of the drug on gene expression. Our observations are consistent with an epistatic relationship between poly(A) polymerase function and cordycepin action and suggest that a major mode of cordycepin activity reduces 3â end formation efficiency independently of its potential to terminate RNA chain elongation. Finally, chemical-genetic profiling revealed genome-wide pathways linked to cordycepin activity and identified novel genes involved in poly(A) homeostasis. Keywords: response to drug treatment Each experiment was performed as triplicate. We analyzed RNA obtained from wild-type cells, from wild-type cells treated with 40 microgram/ml cordycepin for 1 hour, from pap1-1 mutant cells grown at permissive temperature (25°C) and from pap1-1 mutant cells grown at permissive temperature (25°C) treated with 40 microgram/ml cordycepin for 1 hour.
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Bernhard Dichtl
PROVIDER: E-GEOD-14619 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA