Genome-wide mapping of histone methylation in human melanocytes and melanoma cell lines
Ontology highlight
ABSTRACT: Aberrant DNA methylation and histone modifications both contribute to carcinogenesis, but how these two epigenetic factors interact to impact gene expression remain unclear. To address this issue, we studied gene expression profiles, DNA methylation and two key histone modifications (H3K4me3 and H3K27me3), in two types of normal melanocytes (HEMn and HEMa) and two melanoma cell lines SK-MEL-28 and LOXIMVI. Using these data, we analyzed the relationship between epigenetic factors and gene expression status in both normal and melanoma cells, and the impact of epigenetic switches on gene expression during melanomagenesis. ChIP-seq analysis of H3K4me3 and H3K27me3 in two types of normal melanocytes (HEMn and HEMa) and two melanoma cell lines (SK-MEL-28 and LOXIMVI).
ORGANISM(S): Homo sapiens
SUBMITTER: HAI LONG
PROVIDER: E-GEOD-33930 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA