Project description:We assessed the genome-wide binding of the histone acetylase MOF and members of its two associated complexes, the male-specific lethal and the non-specific lethal complex (MSL, NSL). We generated ChIP-seq profiles for MOF, MSL1, MSL2, KANSL3, and MCRS1 from mouse embryonic stem cells and neuronal progenitor cells. By using two replicates per sample and stringent filtering criteria, we identify five basic groups of genome regions where the proteins show either mutual or exclusive binding. We find that the NSL complex members (KANSL3, MCRS1) target the TSSs of broadly expressed genes with housekeeping functions in both cell types. MOF and particularly the MSL complex target a subset of these NSL-complex-targets, too. In addition, we find several thousand TSS-distal binding sites, particularly in ESCs, where KANSL3, MSL2 and MCRS1 show strong enrichments for annotated ESC enhancers. The vast majority of the binding to these ESC distal regulatory elements is lost in NPCs. Finally, we identify mostly intronic and intergenic regions with predominant MSL2 enrichments without the presence of its known interactors. These binding sites do not overlap with ESC marks of active chromatin (e.g. DNase hypersensitivity sites), but the they increase in number upon differentiation and we detect a strong signature of the (CAGA)n motif. Our study provides the first comprehensive analysis of MOF in the context of its two complexes in the mouse and reveals shared as well as distinct and dynamic functions for gene regulation and pluripotency. ChIP-seq of MOF and members of its associated complexes (MSL complex: MSL1, MSL2; NSL complex: KANSL3, MCRS1) in male mouse embryonic stem cells and neuronal progenitor cells derived from them.
Project description:We have studied the regulatory potential of MYST1-(MOF)-containing MSL and NSL complexes in mouse embryonic stem cells (ESCs) and neuronal progenitors. We find that both complexes influence transcription by binding to promoters as well as TSS-distal enhancer regions. In contrast to flies, the MSL complex is not enriched on the X chromosome yet it is crucial for mammalian X chromosome regulation as it specifically regulates Tsix ncRNA, the major repressor of Xist lncRNA. MSL depletion leads to severely decreased Tsix expression, reduced REX1 recruitment, and consequently accumulation of Xist RNA in ESCs. The NSL complex provides additional, Tsix-independent repression of Xist by maintaining pluripotency. MSL and NSL complexes therefore act synergistically by using distinct pathways to ensure a fail-safe mechanism for the repression of X inactivation in ESCs. We have performed ChIP-seq of KANSL3, MCRS1, MOF, MSL1 and MSL2 in mouse ESCs, and KANSL3, MOF and MSL2 in NPCs, in duplicate and normalised against their inputs. We have also performed RNA-seq following knockdown of Kansl3, Mof, Msl1 and Msl2 mouse embryonic stem cells in triplicate. NB: Kansl3 and Mof knockdown-RNAseq are analyzed against their own scrambled controls, and Msl1 and Msl2 against another scrambled control triplicate.
Project description:Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein Geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized both neural cells derived from embryonic stem and embryonal carcinoma cells in vitro and neural stem cells from mouse forebrain. In all of these contexts, Geminin antagonized the ability of neural bHLH transcription factors to activate transcriptional programs promoting neurogenesis. Furthermore, Geminin promoted a bivalent chromatin state, characterized by the presence of both activating and repressive histone modifications, at genes encoding transcription factors that promote neurogenesis. This epigenetic state restrains the expression of genes that regulate commitment of undifferentiated stem and neuronal precursor cells to neuronal lineages. Geminin is highly expressed in undifferentiated neuronal precursor cells but is downregulated prior to differentiation. Therefore, these data support a model whereby Geminin promotes the neuronal precursor cell state by modulating both the epigenetic status and expression of genes encoding neurogenesis-promoting factors. Additional developmental signals acting in these cells can then control their transition toward terminal neuronal or glial differentiation during mammalian neurogenesis. A mouse embryonic stem (ES) cell line for inducible knockdown of the small nucleoprotein Geminin was utilized. ES cells were used to generate neural precursor cells by monolayer culture in N2B27 media for 5 days, and doxycycline-inducible knockdown of Geminin was performed from day 3. Changes in gene expression resulting from Geminin knockdown were assessed by RNA sequencing. Three experimental replicates were generated for Geminin knockdown (plus Dox) with a corresponding no-Dox control. These were subjected to sequencing, and data were analyzed using TopHat and Cufflinks/Cuffdiff. Transcripts were considered as differentially expressed upon Gem knockdown if data met statistical significance cutoffs in Cuffdiff (sufficient sequence alignments were obtained for analysis and transcript had significant change in FPKM value (normalized transcript abundance; fragments per kb of exon per million fragments mapped) between the no Dox and plus Dox sample pairs) in at least two of the three replicates.
Project description:Core circuits of transcription factors stabilize stem and progenitor cells by suppressing genes required for differentiation. We do not know how such core circuits are reorganized during cell fate transitions to allow differentiation and lineage choice to proceed. Here, we asked how the pluripotency circuit, a core transcriptional circuit that maintains mouse embryonic stem (ES) cells in a pluripotent state, is dismantled as ES cells differentiate and choose between the neural ectodermal and mesendodermal progenitor cell fates. When ES cells are recultured from pluripotency maintaining conditions to the basal media N2B27, the expression of the pluripotency circuit genes begins to change. At 48 hours post N2B27 addition, the ES cells are competent to respond to differentiation signals. Here, our microarray analysis compares the gene expression profile of ES cells vs. the gene expression profile of cells that have been treated with N2B27 for 48 hours, reaching the competent state. 2 x mouse ES cells in pluripotency maintaining conditions. 3 x mouse ES cells after 48 hr of N2B27 culture
Project description:We report the application of Chromosome Conformation Capture Carbon-copy (5C) to a 4.5 Mb stretch of the mouse X chromosome encompassing the X inactivation center locus. We uncover a series of discrete 200kb-1Mb topologically associating domains (TADs). These align with several domain-wide epigenomic features as well as co-regulated gene clusters. 5C analysis in EED and G9A mutants reveal that this segmental organisation in TADs does not relie on the underlying H3K27me3 or H3K9me2 blocks. Deletion of a boundary between two TADs leads to ectopic chromosomal contacts between them. Analysis of mESCs, mNPCs and MEFs suggest that the positioning of TADs on the chromosome is stable during cell differentiation though their internal organisation changes. Comparison of male (XY) and female (XX) differentiated cells highlights that the long-range chromosomal contacts within TADs are dampened on the inactive X compared to the active X. 5C oligonucleotides were designed around HindIII restriction site following an alternative scheme
Project description:DNA methylation is known to regulate cell differentiation and neuronal function in vivo. Here we examined whether deficiency of a de novo DNA methyltransferase, Dnmt3a, affects in vitro differentiation of mouse embryonic stem cells (mESCs) to neuronal and glial cell lineages. We found that Dnmt3a-/- neural stem cells (NSCs) derived from mESCs have globally reduced methylcytosine levels and precociously differentiates into astrocytes and oligodendrocytes, consistent with our previous findings in the more severely hypomethylated Dnmt1-/- NSCs. Moreover, Dnmt3a-/- NSC proliferation rate was significantly increased when compared to control. Thus, our work revealed a novel role for Dnmt3a in regulating both timing of neural cell differentiation and cell proliferation in NSCs. Dnmt3a KO vs. WT neural stem cells; 3 biological replicates of each.
Project description:The motor neuron (MN)–hexamer complex consisting of LIM homeobox 3, Islet-1, and nuclear LIM interactor is a key determinant of motor neuron specification and differentiation. To gain insights into the transcriptional network in motor neuron development, we performed a genome-wide ChIP-sequencing analysis and found that the MN–hexamer directly regulates a wide array of motor neuron genes by binding to the HxRE (hexamer response element) shared among the target genes. Interestingly, STAT3-binding motif is highly enriched in the MN–hexamer–bound peaks in addition to the HxRE. We also found that a transcriptionally active form of STAT3 is expressed in embryonic motor neurons and that STAT3 associates with the MN–hexamer, enhancing the transcriptional activity of the MN–hexamer in an upstream signal-dependent manner. Correspondingly, STAT3 was needed for motor neuron differentiation in the developing spinal cord. Together, our studies uncover crucial gene regulatory mechanisms that couple MN–hexamer and STAT-activating extracellular signals to promote motor neuron differentiation in vertebrate spinal cord. To explain our experimental scheme briefly, we are interested in finding target sites for the dimer of transcription factors Isl1 and Lhx3. To mimic the biological activity of Isl1/Lhx3 dimer, we made Isl1-Lhx3 fusion and found that Isl1-Lhx3 has a potent biological activity in multiple systems (i.e. generation of ectopic motor neurons). Then we made ES cell line that induces Flag-tagged Isl1-Lhx3 expression upon Dox treatment. These *mouse* ES cells differentiate to motor neurons (iMN-ESCs) when treated with Dox following EB formation. To identify genomic binding sites of Isl1-Lhx3 (Flag-tagged), we performed ChIP with Flag antibody (pull down of Flag-Isl1-Lhx3) in ES cells treated with Dox. ChIP with Flag antibody in ES cells treated with vehicle (no Dox) was done as a negative control in parallel, and sequenced along with +Dox sample. We have done these experiments twice (two sets).