Pluripotent stem cells reveal novel erythroid activities of the GATA1 N-terminus
Ontology highlight
ABSTRACT: This SuperSeries is composed of the SubSeries listed below. Germline GATA1 mutations resulting in the production of an amino-truncated protein termed GATA1s (for M-bM-^@M-^\shortM-bM-^@M-^]) cause congenital hypoplastic anemia. Similar somatic mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia in trisomy 21 patients. Here we show that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential but enhanced megakaryopoiesis and myelopoiesis, faithfully recapitulating the major phenotypes of associated diseases. Similarly, GATA1s promotes megakaryopoiesis but not erythropoiesis in developmentally arrested Gata1- murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs). Transcriptome studies demonstrate a selective deficiency in the ability of GATA1s to activate erythroid-expressed genes within populations of hematopoietic progenitors. Although its DNA binding domain is intact, chromatin immunoprecipitation studies show that GATA1s binding at specific erythroid regulatory regions is impaired, while binding at many non-erythroid sites, including megakaryocytic and myeloid target genes, is normal. These observations point to lineage specific GATA1 co-factor associations essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes. Refer to individual Series
ORGANISM(S): Mus musculus
SUBMITTER: Ross Hardison
PROVIDER: E-GEOD-61933 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA