The probiotic mixture VSL#3 has differential effects on intestinal immune parameters in healthy female BALB/c and C57BL/
Ontology highlight
ABSTRACT: Probiotic bacteria may render mice resistant to the development of various inflammatory and infectious diseases. This study aimed to identify underlying mechanisms by which probiotic bacteria may influence intestinal immune homeostasis in non-inflammatory conditions. To this end, we studied the effect of short term (3 days) and long term (28 days) oral administration of VSL#3, a mixture of 8 probiotic bacteria, to healthy BALB/c and C57BL/6 mice, with dominant humoral or cellular immunity, respectively. Long-term treatment with VSL#3 resulted in an increase of B cells and a decrease of CD4+ T cells in the Peyer’s patches (PP) and mesenteric lymph nodes (MLN) of both mouse strains, compared to untreated mice. However, genome wide gene expression profiling using micro-arrays revealed that prolonged administration of VSL#3 to BALB/c and C57BL/6 mice was associated with host-specific modulation of gene expression in colon and small intestine. Whereas VSL#3 treatment resulted in down-regulation of Il13 and Epx, and up-regulation of Il12rb1, Ccr5, Cxcr3 and Cxcl10 in BALB/c mice, such effects were not observed in C57BL/6 mice. In BALB/c mice, a 2-fold increase in CD103+ CD11c+ dendritic cells was found both in PP and in MLN, 18 hours after the first treatment with VSL#3. Prolonged treatment with VSL#3 was associated with increased numbers of Th17 cells and Foxp3+ regulatory T cells in the MLN of these mice. In conclusion, these experiments in healthy mice show that probiotic bacteria may alter the immunological phenotype of the host; the nature of these effects is dependent on mouse strain. In conclusion, these experiments in healthy mice show that probiotic bacteria may alter the immunological phenotype of the host; the nature of these effects is dependent on mouse strain. 40 samples (4 experimental groups, 5 biological replicates), performed in two inbred mice strains
ORGANISM(S): Mus musculus
SUBMITTER: Rob Mariman
PROVIDER: E-GEOD-62619 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA