Analysis of gene expression in hTERT/cdk4 immortalized human myoblasts compared to their primary populations in both undifferentiatied (myoblast) and differentiated (myotube) states
Ontology highlight
ABSTRACT: hTERT/cdk4 immortalized myogenic human cell lines represent an important tool for skeletal muscle research, being used as therapeutically-pertinent models of various neuromuscular disorders and in numerous fundamental studies of muscle cell function. However, the cell cycle is linked to other cellular processes such as integrin regulation, the PI3K/Akt pathway, and microtubule stability, raising the question as to whether transgenic modification of the cell cycle results in secondary effects that could undermine the validity of these cell models. Here we subjected healthy and disease lines to intensive transcriptomic analysis, comparing immortalized lines with their parent primary populations in both differentiated and undifferentiated states, and testing their myogenic character by comparison with non-myogenic (CD56-negative) cells. We found that immortalization has no measurable effect on the myogenic cascade or on any other cellular processes, and that it was protective against the systems level effects of senescence that are observed at higher division counts of primary cells. This dataset includes gene expression profiles for 94 samples comprising primary myoblasts and their corresponding immortalized clones in both differentiated and undifferentiated states (average of 4 cell culture replicates each) from 5 human subjects (2 healthy and 3 Duchenne muscular dystropy - DMD), together with primary populations of non-myogenic (CD56-ve) cells from the muscles of 8 other human subjects. Total RNA was extracted from, myoblasts, myotubes (after 9 days of differentiation), or CD56-ve cells by dissolving cell pellets in TRIzol then using PureLink RNA Mini Kit.
ORGANISM(S): Homo sapiens
SUBMITTER: William Duddy
PROVIDER: E-GEOD-79263 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA