Gene expression profiles in the peel and pericarp of pepper fruit
Ontology highlight
ABSTRACT: The quality of the pepper fruit is significantly influenced by the properties of its surface such as color, glossiness and texture. The fruit surface is composed of a peel containing several layers including the cuticle, epidermis and the hypodermis. The peel acts as a protective barrier against biotic and abiotic stresses and is the most critical tissue affecting water loss during post harvest storage. The peel is composed of an outer epidermis with thick waxy (lipid) cuticle and few cell layers of thick-walled hypodermal cells. Despite its agronomic importance and due to the fact that the majority of studies in fruits have been conducted using flesh and peel tissues as a whole, the biochemical and genetic bases of variation in peel properties are largely unknown. In this proposal we aim to determine peel-specific gene expression in pepper by micro array hybridizations of peel and flesh RNA extracted at different developmental stages of the fruit. The cultivar Celica (Capsicum annuum) that has a large blocky fruit will be used for studying gene expression in the peel and flesh. Plants were grown in the greenhouse during the spring of 2006. Fruits were harvested at three developmental stages: young- 10 days after anthesis, mature green- 30 days after anthesis and ripe red- 45 days after anthesis. These stages were chosen because each represents a distinct phase in fruit development. At each stage, a biological replicate consists of bulked tissue from 3 fruits from each of 3 plants (a total of 9 fruits). We have a total of 4 biological replicates. For each fruit, the peel was separated from the flesh by manual dissection using thin forceps and scalpel blade. Peel and flesh samples were immediately frozen in liquid nitrogen and stored at -800C until RNA extraction. Total RNA was extracted using the GenElute Mammalian Total RNA Miniprep kit (Sigma). Keywords: Reference design 12 hybs total
ORGANISM(S): Capsicum annuum
SUBMITTER: Jia Liu
PROVIDER: E-GEOD-8282 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA