Project description:Bacterial Gre factors associate with RNA polymerase (RNAP) and stimulate intrinsic cleavage of the nascent transcript at the active site of RNAP. Biochemical and genetic studies to date have shown that E. coli Gre factors prevent transcriptional arrest during elongation and enhance transcription fidelity. Furthermore, Gre factors participate in stimulation of promoter escape and suppression of promoter-proximal pausing during beginning of RNA synthesis in E. coli. Although Gre factors are conserved in general bacteria, limited functional studies have been performed in bacteria other than E. coli. In this investigation, ChAP-chip analysis was conducted to visualize the distribution of B. subtilis GreA on the chromosome and determine the effects of GreA inactivation on core RNAP trafficking. Our data show that GreA is uniformly distributed in the transcribed region from the promoter to coding region with core RNAP, and its inactivation induces RNAP accumulation at many promoter or promoter-proximal regions. Based on these findings, we propose that GreA would constantly associate with core RNAP during transcriptional initiation and elongation, and resolves its stalling at promoter or promoter-proximal regions, thus contributing to the even distribution of RNAP along the promoter and coding regions in B. subtilis cells.
Project description:Among the most important regulators of gene expression in bacteria are 'nucleoid-associated proteins'. These proteins alter the topology of the bound DNA by bending, wrapping or bridging it, thus having multiple effects, including transcriptional regulation, on the bacterial cell. Among the best-studied nucleoid proteins are H-NS and Fis, which bind to specific sequences on the DNA. H-NS is a global repressor of gene expression. Fis alters the global conformation of the DNA by introducing branched structures in it; but its effect on gene expression on a genomic scale remains largely unclear.<br><br>Several bacterial transcriptional regulators including H-NS and Fis have been studied using ChIP-chip. However, the higher resolution and dynamic range offered by ChIP-Seq have not been exploited for any bacterial species. By performing ChIP-Seq of these two proteins, we present the first such study in a bacterium. In addition to providing a proof-of-principle for the use of this technology for bacteria, we perform our study at multiple time-points during growth in rich medium, thus generating new insights into how these proteins function under different cellular conditions. Further, by analysing our data in conjunction with newly-generated gene expression and RNA polymerase-chromosome interaction data we provide new interpretation of the genome-scale patterns of the interactions of these proteins to the DNA.
Project description:Coordination of chromosome segregation and cytokinesis is crucial for efficient cell proliferation. In Bacillus subtilis the nucleoid occlusion protein Noc protects chromosomes by associating with the chromosome and preventing cell division in its vicinity. Using protein localization, ChAP-on-Chip and bioinformatics, we have identified a consensus Noc-binding DNA sequence (NBS), and show that Noc is targeted to about 70 discrete regions scattered around the chromosome, though absent from a large region around the replication terminus. Purified Noc bound specifically to an NBS in vitro. NBSs inserted near the replication terminus bound Noc-YFP and caused a delay in cell division. An autonomous plasmid carrying an NBS recruited Noc-YFP and conferred a severe Noc-dependent inhibition of cell division. This shows that Noc is a potent inhibitor of division but that its activity is strictly localized by interaction with NBS sites in vivo. We propose that Noc not only serves as a spatial regulator of cell division to protect the nucleoid, but also a timing device with an important role in the co-ordination of chromosome segregation and cell division.
Project description:Bacterial Gre factors associate with RNA polymerase (RNAP) and stimulate intrinsic cleavage of the nascent transcript at the active site of RNAP. Biochemical and genetic studies to date have shown that E. coli Gre factors prevent transcriptional arrest during elongation and enhance transcription fidelity. Furthermore, Gre factors participate in stimulation of promoter escape and suppression of promoter-proximal pausing during beginning of RNA synthesis in E. coli. Although Gre factors are conserved in general bacteria, limited functional studies have been performed in bacteria other than E. coli. In this investigation, ChAP-chip analysis was conducted to visualize the distribution of B. subtilis GreA on the chromosome and determine the effects of GreA inactivation on core RNAP trafficking. Our data show that GreA inactivation induces RNAP accumulation at many promoter or promoter-proximal regions. Additionally, we performed transcriptome comparison between in wild type and greA deletion and greA D44A mutant cells to see the effect of RNAP pausing to the transcriptomes. Our results indicate that inactivation of GreA has a limited impact on the transcriptome, and these effects are not directly related to RNAP accumulation in the promoter or promoter-proximal regions.
Project description:ChIP-seq to identify sigma38 binding sites in wild-type and delta ssrS (6S RNA knockout) strains of E. Coli K-12 MG1655, during stationary phase ChIP-seq using antibody against sigma38 in wild-type and ssrS deletion strain. Two replicates for wild type and one replicate for ssrS deletion.
Project description:To obtain an insight into the in vivo dynamics of RNA polymerase (RNAP) on the B. subtilis genome, we analyzed the distribution of ?A and ? subunits of RNAP and the NusA elongation factor on the genome in exponentially growing cells, using the ChAP (Chromatin Affinity Precipitation)-chip method. In contrast to E. coli RNAP, which often accumulates at the promoter-proximal region, B. subtilis RNAP is evenly distributed from the promoter to the coding sequences in the majority of genes. This finding suggests that B. subtilis RNAP recruited to the promoter promptly translocates away from the promoter to form the elongation complex. We detected RNAP accumulation in the promoter-proximal regions of some genes, most of which are attributed to transcription attenuation systems in the leader region. Our findings suggest that the differences in RNAP behavior during initiation and early elongation steps between E. coli and B. subtilis result in distinct strategies for post-initiation control of transcription. The E. coli mechanism involves trapping at the promoter and promoter-proximal pausing of RNAP in addition to transcription attenuation, whereas transcription attenuation in leader sequences is mainly employed in B. subtilis. Wild-type strain, Bacillus subtilis 168, was also used for RNA and genomic DNA extraction and analysis - RNA data was divided by genome DNA data to normalize (1) PCR bias and (2) copy number of RNA molecule per genome for multi-copy genome of exponentially growing bacteria.
Project description:The direct roles of the NO-sensitive NsrR repressor and the ResD response regulator in transcriptional control in Bacillus subtilis
Project description:Genome-wide binding profiles of AbrB and Abh was determined by use of ChAP (chromatin affinity purification)-chip method, modified method of ChIP-chip. Genetic modification was undertaken to abrB and abh genes to translationally fuse 2HC (coding sequence of twelve histidine and chitin binding domain) at the 3' ends to express AbrB-2HC and Abh-2HC proteins respectively.
Project description:Chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) was carried out to identify new target genes for ETS-domain transcription factor Elk-1. Experiment was done in Hela cells under serum starved conditions.