Glucocorticoid therapy regulates podocyte motility by inhibition of Rac1
Ontology highlight
ABSTRACT: Nephrotic syndrome (NS) occurs when the glomerular filtration barrier becomes excessively permeable leading to massive proteinuria. In childhood NS, dysregulation of the immune system has been implicated and increasing evidence points to the central role of podocytes in the pathogenesis. Children with NS are typically treated with an empiric course of glucocorticoid (Gc) therapy; a class of steroids that are activating ligands for the glucocorticoid receptor (GR) transcription factor. Although Gc-therapy has been the cornerstone of NS management for decades, the mechanism of action, and target cell, remain poorly understood. We tested the hypothesis that Gc acts directly on the podocyte to produce clinically useful effects without involvement of the immune system. In human podocytes, we demonstrated that the basic GR-signalling mechanism is intact and that Gc induced an increase in podocyte barrier function. To gain mechanistic insight we performed RNA microarray and ChIP-sequencing and identified Gc regulation of motility genes.
ORGANISM(S): Homo sapiens
SUBMITTER: Leo Zeef
PROVIDER: E-MTAB-5235 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA