Project description:To curb the staggering health burden attributed to air pollution, the sustainable solution for India would be to reduce emissions in future. Here we project ambient fine particulate matter (PM2.5) exposure in India for the year 2030 under two contrasting air pollution emission pathways for two different climate scenarios based on Representative Concentration Pathways (RCP4.5 and RCP8.5). All-India average PM2.5 is expected to increase from 41.4 ± 26.5 μg m-3 in 2010 to 61.1 ± 40.8 and 58.2 ± 37.5 μg m-3 in 2030 under RCP8.5 and RCP4.5 scenarios, respectively if India follows the current legislation (baseline) emission pathway. In contrast, ambient PM2.5 in 2030 would be 40.2 ± 27.5 (for RCP8.5) and 39.2 ± 25.4 (for RCP4.5) μg m-3 following the short-lived climate pollutant (SLCP) mitigation emission pathway. We find that the lower PM2.5 in the mitigation pathway (34.2% and 32.6%, respectively for RCP8.5 and RCP4.5 relative to the baseline emission pathway) would come at a cost of 0.3-0.5 °C additional warming due to the direct impact of aerosols. The premature mortality burden attributable to ambient PM2.5 exposure is expected to rise from 2010 to 2030, but 381,790 (5-95% confidence interval, CI 275,620-514,600) deaths can be averted following the mitigation emission pathway relative to the baseline emission pathway. Therefore, we conclude that given the expected large health benefit, the mitigation emission pathway is a reasonable tradeoff for India despite the meteorological response. However, India needs to act more aggressively as the World Health Organization (WHO) annual air quality guideline (10 µg m-3) would remain far off.
Project description:We used a hybrid transmission and economic model to evaluate the relative merits of stockpiling antiviral drugs and vaccine for pandemic influenza mitigation. In the absence of any intervention, our base-case assumptions generated a population clinical attack rate of 31.1%. For at least some parameter values, population prepandemic vaccination strategies were effective at containing an outbreak of pandemic influenza until the arrival of a matched vaccine. Because of the uncertain nature of many parameters, we used a probabilistic approach to determine the most cost-effective strategies. At a willingness to pay of >A$24,000 per life-year saved, more than half the simulations showed that a prepandemic vaccination program combined with antiviral treatment was cost-effective in Australia.
Project description:Conservationists are continually seeking new strategies to reverse population declines and safeguard against species extinctions. Here we evaluate the potential efficacy of a recently proposed approach to offset a major anthropogenic threat to many marine vertebrates: incidental bycatch in commercial fisheries operations. This new approach, compensatory mitigation for marine bycatch (CMMB), is conceived as a way to replace or reduce mandated restrictions on fishing activities with compensatory activities (e.g., removal of introduced predators from islands) funded by levies placed on fishers. While efforts are underway to bring CMMB into policy discussions, to date there has not been a detailed evaluation of CMMB's potential as a conservation tool, and in particular, a list of necessary and sufficient criteria that CMMB must meet to be an effective conservation strategy. Here we present a list of criteria to assess CMMB that are tied to critical ecological aspects of the species targeted for conservation, the range of possible mitigation activities, and the multi-species impact of fisheries bycatch. We conclude that, overall, CMMB has little potential for benefit and a substantial potential for harm if implemented to solve most fisheries bycatch problems. In particular, CMMB is likely to be effective only when applied to short-lived and highly-fecund species (not the characteristics of most bycatch-impacted species) and to fisheries that take few non-target species, and especially few non-seabird species (not the characteristics of most fisheries). Thus, CMMB appears to have limited application and should only be implemented after rigorous appraisal on a case-specific basis; otherwise it has the potential to accelerate declines of marine species currently threatened by fisheries bycatch.
Project description:We use a simple SIR-like epidemic model integrating known age-contact patterns for the United States to model the effect of age-targeted mitigation strategies for a COVID-19-like epidemic. We find that, among strategies which end with population immunity, strict age-targeted mitigation strategies have the potential to greatly reduce mortalities and ICU utilization for natural parameter choices.
Project description:With more than three billion people in isolation, the status of digital spaces is switching from an amenity to a necessity, as they become not only the main way to access information and services, but also one of the only remaining vectors for economic, educational, and leisure activities as well as for social interactions to take place. However, not all are equals in terms of access to networks or connected devices, or when it comes to the skills required to navigate computerized spaces optimally. Digital inequalities were already existing, yet the COVID-19 crisis is exacerbating them dramatically. On the one hand, the crisis will worsen digital inequalities within the population. On the other hand, digital inequalities represent a major risk factor of vulnerability for exposure to the virus itself, and for the non-sanitary consequences of the crisis. Therefore, this paper aims at exploring the reciprocal impacts of the COVID-19 crisis and digital inequalities, and to propose operative solutions to help fight the nefarious consequences of the crisis. We first describe how digital inequalities are a determinant of health. We then investigate how COVID-19 can potentiate digital inequalities, and how digital inequalities potentiate vulnerability to COVID-19. Finally, in order to contribute to the mitigation of this crisis, we propose a set of multi-layered strategies focusing on actionability that can be implemented at multiple structural levels, ranging from governmental to corporate and community levels.
Project description:ObjectivesThe economic burden of COVID-19 pandemic is substantial, with both direct and indirect costs playing a significant role.DesignA systematic literature review was conducted to estimate the cost of the COVID-19 pandemic and the cost-effectiveness of pharmaceutical or non-pharmaceutical interventions. All cost data were adjusted to the 2021 Euro, and interventions compared with null.Data sourcesOvid MEDLINE and EMBASE were searched from January 2020 through 22 April 2021.Eligibility criteriaStudies regarding COVID-19 outbreak or public health preparedness measures or interventions with outcome measures related to the direct and indirect costs for disease and preparedness and/or response in countries of the European Union (EU), the European Economic Area (EEA), the UK and the Organisation for Economic Co-operation and Development (OECD) of all relevant epidemiological designs which estimate cost within the selected time frame were considered eligible.Data extraction and synthesisStudies were searched, screened and coded independently by two reviewers with high measure of inter-rater agreement. Data were extracted to a predefined data extraction sheet. The risk of bias was assessed using the Consensus on Health Economic Criteria checklist.ResultsWe included data from 41 economic studies. Ten studies evaluated the cost of the COVID-19 pandemic, while 31 assessed the cost-benefit of public health surveillance, preparedness and response measures. Overall, the economic burden of the COVID-19 pandemic was found to be substantial. Community screening, bed provision policies, investing in personal-protective-equipment and vaccination strategies were cost-effective. Physical distancing measures were associated with health benefits; however, their cost-effectiveness was dependent on the duration, compliance and the phase of the epidemic in which it was implemented.ConclusionsCOVID-19 pandemic is associated with substantial short-term and long-term economic costs to healthcare systems, payers and societies, while interventions including testing and screening policies, vaccination and physical distancing policies were identified as those presenting cost-effective options to deal with the pandemic, dependent on population vaccination and the Re at the stage of the pandemic.
Project description:BackgroundAs China amends its "zero COVID" strategy, a sudden increase in the number of infections may overwhelm medical resources and its impact has not been quantified. Specific mitigation strategies are needed to minimize disruption to the healthcare system and to prepare for the next possible epidemic in advance.MethodWe develop a stochastic compartmental model to project the burden on the medical system (that is, the number of fever clinic visits and admission beds) of China after adjustment to COVID-19 policy, which considers the epidemiological characteristics of the Omicron variant, age composition of the population, and vaccine effectiveness against infection and severe COVD-19. We also estimate the effect of four-dose vaccinations (heterologous and homologous), antipyretic drug supply, non-pharmacological interventions (NPIs), and triage treatment on mitigating the domestic infection peak.ResultAs to the impact on the medical system, this epidemic is projected to result in 398.02 million fever clinic visits and 16.58 million hospitalizations, and the disruption period on the healthcare system is 18 and 30 days, respectively. Antipyretic drug supply and booster vaccination could reduce the burden on emergency visits and hospitalization, respectively, while neither of them could not reduce to the current capacity. The synergy of several different strategies suggests that increasing the heterologous booster vaccination rate for older adult to over 90% is a key measure to alleviate the bed burden for respiratory diseases on the basis of expanded healthcare resource allocation.ConclusionThe Omicron epidemic followed the adjustment to COVID-19 policy overloading many local health systems across the country at the end of 2022. The combined effect of vaccination, antipyretic drug supply, triage treatment, and PHSMs could prevent overwhelming medical resources.
Project description:Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.
Project description:In non-pharmaceutical management of COVID-19, occupancy of intensive care units (ICU) is often used as an indicator to inform when to intensify mitigation and thus reduce SARS-CoV-2 transmission, strain on ICUs, and deaths. However, ICU occupancy thresholds at which action should be taken are often selected arbitrarily. We propose a quantitative approach using mathematical modeling to identify ICU occupancy thresholds at which mitigation should be triggered to avoid exceeding the ICU capacity available for COVID-19 patients and demonstrate this approach for the United States city of Chicago. We used a stochastic compartmental model to simulate SARS-CoV-2 transmission and disease progression, including critical cases that would require intensive care. We calibrated the model using daily COVID-19 ICU and hospital census data between March and August 2020. We projected various possible ICU occupancy trajectories from September 2020 to May 2021 with two possible levels of transmission increase and uncertainty in core model parameters. The effect of combined mitigation measures was modeled as a decrease in the transmission rate that took effect when projected ICU occupancy reached a specified threshold. We found that mitigation did not immediately eliminate the risk of exceeding ICU capacity. Delaying action by 7 days increased the probability of exceeding ICU capacity by 10-60% and this increase could not be counteracted by stronger mitigation. Even under modest transmission increase, a threshold occupancy no higher than 60% was required when mitigation reduced the reproductive number Rt to just below 1. At higher transmission increase, a threshold of at most 40% was required with mitigation that reduced Rt below 0.75 within the first two weeks after mitigation. Our analysis demonstrates a quantitative approach for the selection of ICU occupancy thresholds that considers parameter uncertainty and compares relevant mitigation and transmission scenarios. An appropriate threshold will depend on the location, number of ICU beds available for COVID-19, available mitigation options, feasible mitigation strengths, and tolerated durations of intensified mitigation.
Project description:Purpose. To estimate the impact on mortality of nonpharmaceutical interventions (NPIs) implemented early in the COVID-19 pandemic. Methods. We implemented an agent-based modified SEIR model of COVID-19, calibrated to match death numbers reported in Pennsylvania from January 2020 to April 2021 and including representations of NPIs implemented in Pennsylvania. To investigate the impact of these strategies, we ran the calibrated model with no interventions and with varying combinations, timings, and levels of interventions. Results. The model closely replicated death outcomes data for Pennsylvania. Without NPIs, deaths in the early months of the pandemic were estimated to be much higher (67,718 deaths compared to actual 6,969). Voluntary interventions alone were relatively ineffective at decreasing mortality. Delaying implementation of interventions led to higher deaths (∼9,000 more deaths with just a 1-week delay). School closure was insufficient as a single intervention but was an important part of a combined intervention strategy. Conclusions. NPIs were effective at reducing deaths early in the COVID-19 pandemic. Agent-based models can incorporate substantial detail on infectious disease spread and the impact of mitigations. Policy Implications. The model supports the importance and effectiveness of NPIs to decrease morbidity from respiratory pathogens. This is particularly important for emerging pathogens for which no vaccines or treatments exist, but such strategies are applicable to a variety of respiratory pathogens.HighlightsNonpharmaceutical interventions were used extensively during the early period of the COVID-19 pandemic, but their use has remained controversial.Agent-based modeling of the impact of these mitigation strategies early in the COVID-19 pandemic supports the effectiveness of nonpharmaceutical interventions at decreasing mortality.Since such interventions are not specific to a particular pathogen, they can be used to protect against any respiratory pathogen, known or emerging. They can be applied rapidly when conditions warrant.