Unknown

Dataset Information

0

Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum.


ABSTRACT: Previous studies have reported beta-lactamase-mediated penicillin resistance in Fusobacterium nucleatum, but no beta-lactamase gene has yet been identified in this species. An F. nucleatum subsp. polymorphum strain resistant to penicillin and amoxicillin was isolated from a human periodontitis sample. DNA cloning and sequencing revealed a 765-bp open reading frame encoding a new class D beta-lactamase named FUS-1 (OXA-85). A recombinant Escherichia coli strain carrying the bla(FUS-1) gene exhibited resistance to amoxicillin with a moderate decrease in the MICs with clavulanic acid. The bla(FUS-1) gene was found in two additional clonally unrelated F. nucleatum subsp. polymorphum isolates. It was located on the chromosome in a peculiar genetic environment where a gene encoding a putative transposase-like protein is found, suggesting a possible acquisition of this class D beta-lactamase gene. The FUS-1 enzyme showed the closest ancestral relationship with OXA-63 from Brachyspira pilosicoli (53% identity) and with putative chromosomal beta-lactamases of Campylobacter spp. (40 to 42% identity). FUS-1 presents all of the conserved structural motifs of class D beta-lactamases. Kinetic analysis revealed that FUS-1 exhibits a narrow substrate profile, efficiently hydrolyzing benzylpenicillin and oxacillin. FUS-1 was poorly inactivated by clavulanate and NaCl. FUS-1 is the first example of a class D beta-lactamase produced by a gram-negative, anaerobic, rod-shaped bacterium to be characterized.

SUBMITTER: Voha C 

PROVIDER: S-EPMC1538689 | biostudies-literature | 2006 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum.

Voha Christine C   Docquier Jean-Denis JD   Rossolini Gian Maria GM   Fosse Thierry T  

Antimicrobial agents and chemotherapy 20060801 8


Previous studies have reported beta-lactamase-mediated penicillin resistance in Fusobacterium nucleatum, but no beta-lactamase gene has yet been identified in this species. An F. nucleatum subsp. polymorphum strain resistant to penicillin and amoxicillin was isolated from a human periodontitis sample. DNA cloning and sequencing revealed a 765-bp open reading frame encoding a new class D beta-lactamase named FUS-1 (OXA-85). A recombinant Escherichia coli strain carrying the bla(FUS-1) gene exhibi  ...[more]

Similar Datasets

| S-EPMC5828091 | biostudies-literature
| S-EPMC1924603 | biostudies-literature
| S-EPMC5472499 | biostudies-literature
2021-05-20 | GSE164282 | GEO
| S-EPMC3457189 | biostudies-literature
| PRJNA1045796 | ENA
| PRJNA1044226 | ENA
| S-EPMC10483916 | biostudies-literature
| S-EPMC6105830 | biostudies-literature
| S-EPMC6153822 | biostudies-literature