Unknown

Dataset Information

0

Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum.


ABSTRACT: DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate), an anion channel blocker, triggers Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). The present study characterized the effects of DIDS on rabbit skeletal single Ca2+-release channel/RyR1 (ryanodine receptor type 1) incorporated into a planar lipid bilayer. When junctional SR vesicles were used for channel incorporation (native RyR1), DIDS increased the mean P(o) (open probability) of RyR1 without affecting unitary conductance when Cs+ was used as the charge carrier. Lifetime analysis of single RyR1 activities showed that 10 microM DIDS induced reversible long-lived open events (P(o)=0.451+/-0.038) in the presence of 10 microM Ca2+, due mainly to a new third component for both open and closed time constants. However, when purified RyR1 was examined in the same condition, 10 microM DIDS became considerably less potent (P(o)=0.206+/-0.025), although the caffeine response was similar between native and purified RyR1. Hence we postulated that a DIDS-binding protein, essential for the DIDS sensitivity of RyR1, was lost during RyR1 purification. DIDS-affinity column chromatography of solubilized junctional SR, and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analysis of the affinity-column-associated proteins, identified four major DIDS-binding proteins in the SR fraction. Among them, aldolase was the only protein that greatly potentiated DIDS sensitivity. The association between RyR1 and aldolase was further confirmed by co-immunoprecipitation and aldolase-affinity batch-column chromatography. Taken together, we conclude that aldolase is physically associated with RyR1 and could confer a considerable potentiation of the DIDS effect on RyR1.

SUBMITTER: Seo IR 

PROVIDER: S-EPMC1609923 | biostudies-literature | 2006 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum.

Seo In-Ra IR   Moh Sang Hyun SH   Lee Eun Hui EH   Meissner Gerhard G   Kim Do Han DH  

The Biochemical journal 20061001 2


DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate), an anion channel blocker, triggers Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). The present study characterized the effects of DIDS on rabbit skeletal single Ca2+-release channel/RyR1 (ryanodine receptor type 1) incorporated into a planar lipid bilayer. When junctional SR vesicles were used for channel incorporation (native RyR1), DIDS increased the mean P(o) (open probability) of RyR1 without affecting unitary conductance w  ...[more]

Similar Datasets

| S-EPMC6064922 | biostudies-literature
| S-EPMC2154479 | biostudies-literature
| S-EPMC3156908 | biostudies-literature
| S-EPMC1137923 | biostudies-other
| S-EPMC4687604 | biostudies-literature
| S-EPMC4000583 | biostudies-literature
| S-EPMC1163077 | biostudies-other
| S-EPMC3639577 | biostudies-literature
| S-EPMC3965891 | biostudies-literature
| S-EPMC6302159 | biostudies-literature