Unknown

Dataset Information

0

Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage.


ABSTRACT: The prion protein (PrP) propensity to adopt different structures is a clue to its biological role. PrP oligomers have been previously reported to bear prion infectivity or toxicity and were also found along the pathway of in vitro amyloid formation. In the present report, kinetic and structural analysis of ovine PrP (OvPrP) oligomerization showed that three distinct oligomeric species were formed in parallel, independent kinetic pathways. Only the largest oligomer gave rise to fibrillar structures at high concentration. The refolding of OvPrP into these different oligomers was investigated by analysis of hydrogen/deuterium exchange and introduction of disulfide bonds. These experiments revealed that, before oligomerization, separation of contacts in the globular part (residues 127-234) occurred between the S1-H1-S2 domain (residues 132-167) and the H2-H3 bundle (residues 174-230), implying a conformational change of the S2-H2 loop (residues 168-173). The type of oligomer to be formed depended on the site where the expansion of the OvPrP monomer was initiated. Our data bring a detailed insight into the earlier conformational changes during PrP oligomerization and account for the diversity of oligomeric entities. The kinetic and structural mechanisms proposed here might constitute a physicochemical basis of prion strain genesis.

SUBMITTER: Eghiaian F 

PROVIDER: S-EPMC1863451 | biostudies-literature | 2007 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage.

Eghiaian Frederic F   Daubenfeld Thorsten T   Quenet Yann Y   van Audenhaege Marieke M   Bouin Anne-Pascale AP   van der Rest Guillaume G   Grosclaude Jeanne J   Rezaei Human H  

Proceedings of the National Academy of Sciences of the United States of America 20070418 18


The prion protein (PrP) propensity to adopt different structures is a clue to its biological role. PrP oligomers have been previously reported to bear prion infectivity or toxicity and were also found along the pathway of in vitro amyloid formation. In the present report, kinetic and structural analysis of ovine PrP (OvPrP) oligomerization showed that three distinct oligomeric species were formed in parallel, independent kinetic pathways. Only the largest oligomer gave rise to fibrillar structur  ...[more]

Similar Datasets

| S-EPMC3788119 | biostudies-literature
| S-EPMC4761447 | biostudies-literature
| S-EPMC3490051 | biostudies-literature
| S-EPMC6231129 | biostudies-literature
| S-EPMC3825792 | biostudies-literature
| S-EPMC7732725 | biostudies-literature
| S-EPMC5440672 | biostudies-literature
| S-EPMC2829980 | biostudies-literature
| S-EPMC2825376 | biostudies-literature
| S-EPMC6700750 | biostudies-literature