Attenuated free cholesterol loading-induced apoptosis but preserved phospholipid composition of peritoneal macrophages from mice that do not express group VIA phospholipase A2.
Ontology highlight
ABSTRACT: Mouse macrophages undergo ER stress and apoptosis upon free cholesterol loading (FCL). We recently generated iPLA(2)beta-null mice, and here we demonstrate that iPLA(2)beta-null macrophages have reduced sensitivity to FCL-induced apoptosis, although they and wild-type (WT) cells exhibit similar increases in the transcriptional regulator CHOP. iPLA(2)beta-null macrophages are also less sensitive to apoptosis induced by the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin and the scavenger receptor A ligand fucoidan, and restoring iPLA(2)betaexpression with recombinant adenovirus increases apoptosis toward WT levels. WT and iPLA(2)beta-null macrophages incorporate [(3)H]arachidonic acid ([(3)H]AA]) into glycerophosphocholine lipids equally rapidly and exhibit identical zymosan-induced, cPLA(2)alpha-catalyzed [(3)H]AA release. In contrast, although WT macrophages exhibit robust [(3)H]AA release upon FCL, this is attenuated in iPLA(2)beta-null macrophages and increases toward WT levels upon restoring iPLA(2)beta expression. Recent reports indicate that iPLA(2)beta modulates mitochondrial cytochrome c release, and we find that thapsigargin and fucoidan induce mitochondrial phospholipid loss and cytochrome c release into WT macrophage cytosol and that these events are blunted in iPLA(2)beta-null cells. Immunoblotting studies indicate that iPLA(2)beta associates with mitochondria in macrophages subjected to ER stress. AA incorporation into glycerophosphocholine lipids is unimpaired in iPLA(2)beta-null macrophages upon electrospray ionization-tandem mass spectrometry analyses, and their complex lipid composition is similar to WT cells. These findings suggest that iPLA(2)beta participates in ER stress-induced macrophage apoptosis caused by FCL or thapsigargin but that deletion of iPLA(2)beta does not impair macrophage arachidonate incorporation or phospholipid composition.
SUBMITTER: Bao S
PROVIDER: S-EPMC2044506 | biostudies-literature | 2007 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA