Unknown

Dataset Information

0

Portability of paddle motif function and pharmacology in voltage sensors.


ABSTRACT: Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein-lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target.

SUBMITTER: Alabi AA 

PROVIDER: S-EPMC2709416 | biostudies-literature | 2007 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Portability of paddle motif function and pharmacology in voltage sensors.

Alabi Abdulrasheed A AA   Bahamonde Maria Isabel MI   Jung Hoi Jong HJ   Kim Jae Il JI   Swartz Kenton J KJ  

Nature 20071101 7168


Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from  ...[more]

Similar Datasets

| S-EPMC3777420 | biostudies-literature
| S-EPMC7036696 | biostudies-literature
| S-EPMC4306711 | biostudies-literature
| S-EPMC4907688 | biostudies-literature
| S-EPMC6541726 | biostudies-literature
| S-EPMC2584729 | biostudies-literature
| S-EPMC2869078 | biostudies-literature
| S-EPMC5658252 | biostudies-literature
| S-EPMC2151668 | biostudies-literature
| S-EPMC1839852 | biostudies-literature