Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus.
Ontology highlight
ABSTRACT: Pepino mosaic virus (PepMV) is an emerging pathogen that causes severe economic losses in tomato crops (Solanum lycopersicum L.) in the Northern hemisphere, despite persistent attempts of control. In fact, it is considered one of the most significant viral diseases for tomato production worldwide, and it may constitute a good model for the analysis of virus emergence in crops. We have combined a population genetics approach with an analysis of in planta properties of virus strains to explain an observed epidemiological pattern. Hybridization analysis showed that PepMV populations are composed of isolates of two types (PepMV-CH2 and PepMV-EU) that cocirculate. The CH2 type isolates are predominant; however, EU isolates have not been displaced but persist mainly in mixed infections. Two molecularly cloned isolates belonging to each type have been used to examine the dynamics of in planta single infections and coinfection, revealing that the CH2 type has a higher fitness than the EU type. Coinfections expand the range of susceptible hosts, and coinfected plants remain symptomless several weeks after infection, so a potentially important problem for disease prevention and management. These results provide an explanation of the observed epidemiological pattern in terms of genetic and ecological interactions among the different viral strains. Thus, mixed infections appear to be contributing to shaping the genetic structure and dynamics of PepMV populations.
SUBMITTER: Gomez P
PROVIDER: S-EPMC2786733 | biostudies-literature | 2009 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA