Synthesis and characterization of iron(II) quinaldate complexes.
Ontology highlight
ABSTRACT: Treatment of iron(II) chloride or iron(II) bromide with 2 equiv of sodium quinaldate (qn = quinaldate or C(10)H(6)NO(2)(-)) yields the coordinatively unsaturated mononuclear iron(II) quinaldate complexes Na[Fe(II)(qn)(2)Cl].DMF and Na[Fe(II)(qn)(2)Br].DMF (DMF = N,N-dimethylformamide), respectively. When a similar synthesis is carried out using iron(II) triflate, a solvent-derived linear triiron(II) complex, [Fe(II)(3)(qn)(6)(DMF)(2)], with two five-coordinate iron(II) centers and a single six-coordinate iron(II) center is obtained. Each of these species has been characterized using X-ray diffraction. The vibrational features of these complexes are consistent with the observed solid-state structures. Each of these compounds exhibits an iron(II)-to-quinaldate (pi*) charge-transfer band between 520 and 550 nm. These metal-to-ligand charge-transfer bands are sensitive to substitution of the quinaldates as well as alteration of the first coordination sphere ligands. However, the (1)H NMR spectra of these paramagnetic high-spin iron(II) complexes are not consistent with retention of the solid-state structures in a DMF solution. The chemical shifts, longitudinal relaxation times (T(1)), relative integrations, and substitution of the quinaldate ligands provide a means to fully assign the (1)H NMR spectra of the paramagnetic materials. These spectra are consistent with coordination equilibria between five- and six-coordinate species in a DMF solution. Electrochemical studies are reported to place these oxygen-sensitive compounds in a broader context with other iron(II) compounds. Iron complexes of bidentate quinoline-2-carboxylate-derived ligands are germane to metabolic pathways, environmental remediation, and catalytic applications.
SUBMITTER: Houghton DT
PROVIDER: S-EPMC2826226 | biostudies-literature | 2010 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA