Unknown

Dataset Information

0

1?,25-dihydroxyvitamin D3 inhibits C4-2 prostate cancer cell growth via a retinoblastoma protein (Rb)-independent G1 arrest.


ABSTRACT: The active metabolite of vitamin D, 1?,25-dihydroxyvitamin D(3) (1,25D) reduces the growth of several prostate cancer cell lines, most commonly by inducing a cell-cycle arrest in G(1). This is mediated, in part, through down-regulation of c-Myc, a positive regulator of the transcription factor, E2F. There is evidence that prostate cancer cells lacking functional retinoblastoma protein (Rb), a negative regulator of E2F activity, are poorly responsive to 1,25D treatment. Since up to 60% of prostate cancers demonstrate a loss of heterozygosity for Rb, we sought to determine whether Rb is required for the growth inhibitory effects of 1,25D.Using siRNA, Rb was reduced in C4-2 prostate cancer cells, and the response of cells to 1,25D treatment or depletion of c-myc measured by [(3)H]-thymidine incorporation and flow cytometry. The effects of 1,25D treatment on E2F levels and activity, and E2F target gene expression were also measured.1,25D treatment and c-Myc depletion both cause a G(1) arrest inhibiting C4-2 cell proliferation independently of Rb. 1,25D reduces c-Myc expression and causes a decrease in E2F and E2F target genes. Bcl-2, an E2F target and positive regulator of C4-2 cell growth, also is down-regulated by 1,25D independently of Rb.Redundant growth inhibitory pathways compensate for the loss of Rb, and tumors lacking functional Rb may be responsive to 1,25D.

SUBMITTER: Washington MN 

PROVIDER: S-EPMC2966519 | biostudies-literature | 2011 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

1α,25-dihydroxyvitamin D3 inhibits C4-2 prostate cancer cell growth via a retinoblastoma protein (Rb)-independent G1 arrest.

Washington Michele N MN   Kim Jung-Sun JS   Weigel Nancy L NL  

The Prostate 20110101 1


<h4>Background</h4>The active metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D) reduces the growth of several prostate cancer cell lines, most commonly by inducing a cell-cycle arrest in G(1). This is mediated, in part, through down-regulation of c-Myc, a positive regulator of the transcription factor, E2F. There is evidence that prostate cancer cells lacking functional retinoblastoma protein (Rb), a negative regulator of E2F activity, are poorly responsive to 1,25D treatment. Since u  ...[more]

Similar Datasets

2024-03-20 | GSE261699 | GEO
| S-EPMC8699879 | biostudies-literature
| S-EPMC4828645 | biostudies-literature
| S-EPMC7948959 | biostudies-literature
2023-05-10 | PXD040622 | Pride
| S-EPMC10358083 | biostudies-literature
| PRJNA1088447 | ENA
| S-EPMC4908484 | biostudies-other
| S-EPMC8017547 | biostudies-literature
| S-EPMC3241659 | biostudies-literature