Three-component coupling reactions of silyl glyoxylates, vinyl Grignard reagent, and nitroalkenes: an efficient, highly diastereoselective approach to nitrocyclopentanols.
Three-component coupling reactions of silyl glyoxylates, vinyl Grignard reagent, and nitroalkenes: an efficient, highly diastereoselective approach to nitrocyclopentanols.
Project description:The three-component coupling of Mg acetylides, silyl glyoxylates, and nitroalkenes results in a highly diastereoselective Kuwajima-Reich/vinylogous Michael cascade that provides tetrasubstituted silyloxyallene products. The regio- and diastereoselectivity were studied using DFT calculations. These silyloxyallenes were converted to cyclopentenols and cyclopentitols via a unique Lewis acid assisted Henry cyclization. The alkene functionality present in the cyclopentanol products can be elaborated using diastereoselective ketohydroxylation reactions.
Project description:Silyl glyoxylates react with enolates and enones to afford either glycolate aldol or Michael adducts. Product identity is controlled by the countercation associated with the enolate. Reformatsky nucleophiles in the presence of additional Zn(OTf)(2) result in aldol coupling (A), while lithium enolates provide the Michael coupling (B). Deprotonation of the aldol product A with LDA induces equilibration to form the minor diastereomer of Michael product B. This observation suggests that formation of the major diastereomer of Michael product B does not occur via an aldol/retro-aldol/Michael sequence.
Project description:A diastereoselective auxiliary-mediated vinylation/[1,2]-Brook rearrangement/vinylogous Michael cascade of silyl glyoximide, vinylmagnesium bromide, and nitroalkenes is described. The reaction occurs with complete regio- and diastereocontrol in good yield. The diastereoselectivity is induced by a rare instance of 1,7-chirality transfer that is hypothesized to arise from a trans-multihetero-decalin transition state.
Project description:Three contiguous stereocenters can be established with remarkable diastereoselectivity in a double Reformatsky sequence. Densely functionalized gamma-butyrolactones were assembled rapidly by this approach, in which a ketone is used as the terminal electrophile (see scheme). Secondary transformations of the lactone products enhance their synthetic utility. R(1) = Me, H; R(2) = alkyl, aryl, CF(3); Bn = benzyl, TBS = tert-butyldimethylsilyl.
Project description:Lanthanide triisopropoxides catalyze a rapid, tandem MPV reduction/Brook rearrangement/aldol sequence between silyl glyoxylates and aldehydes that achieves catalytic turnover through alkoxide transfer from a strain-release Lewis acidic silacycle.
Project description:Studies of the silyl-Heck reaction aimed at identifying active palladium complexes have revealed a new species that is formed in situ. This complex has been identified as the palladium iodide dimer, [(JessePhos)PdI2]2, which has been found to be a competent single-component precatalyst for the silyl-Heck reaction. This complex is easily prepared and is temperature, moisture, and air stable. Additionally, this precatalyst provides higher activity and greater reproducibility compared to previous systems.
Project description:We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C-C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C-F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C-C bond forming reactions, providing useful information for developing efficient and straightforward multicomponent reactions.
Project description:A formal synthesis of leustroducsin B has been completed. The synthesis relies upon a recently developed Reformatsky/Claisen condensation of silyl glyoxylates and enantioenriched β-lactones that establishes two of the molecule's three core stereocenters and permits further elaboration to an intermediate in Imanishi's synthesis via reliable chemistry (Prasad reduction, asymmetric pentenylation, Mitsunobu inversion).
Project description:In this manuscript we highlight the potential of stereospecific nickel-catalyzed cross-coupling reactions for applications in the pharmaceutical industry. Using an inexpensive and sustainable nickel catalyst, we report a gram-scale Kumada cross-coupling reaction. Reactions are highly stereospecific and proceed with inversion at the benzylic position. We also expand the scope of our reaction to incorporate isotopically labeled substituents.
Project description:The reaction between bis(2-benzothiazolyl)ketone and vinyl Grignard reagents bearing different substituents on the vinyl moiety gave the product derived from attack on the carbonylic carbon- and/or oxygen-atom. The regioselectivity of the attack depends on the kind of substituents bound to the vinylic carbon atoms and on their relative position. The reaction between vinylmagnesium bromide and 2-methyl-1-propenylmagnesium bromide was carried out under different experimental conditions and in the presence of radical scavengers. The results indicate a plausible mechanistic pathway involving radical intermediates in the case of O-alkylation, but a polar ones in the case of classic C-alkylation. This agrees with our previous reports indicating a key role played by the delocalization ability of the substituents bound to the carbonyl group in driving the regioselectivity of the vinylmagnesium bromide attack towards O-alkylation. Further support of this was obtained by diffractometric analysis of four distinct bis(heteroaryl)ketones.