Unknown

Dataset Information

0

Targeted chemical wedges reveal the role of allosteric DNA modulation in protein-DNA assembly.


ABSTRACT: The cooperative assembly of multiprotein complexes results from allosteric modulations of DNA structure as well as direct intermolecular contacts between proteins. Such cooperative binding plays a critical role in imparting exquisite sequence specificity on the homeobox transcription factor (Hox) family of developmental transcription factors. A well-characterized example includes the interaction of Hox proteins with extradenticle (Exd), a highly conserved DNA binding transcription factor. Although direct interactions are important, the contribution of indirect interactions toward cooperative assembly of Hox and Exd remains unresolved. Here we use minor groove binding polyamides as structural wedges to induce perturbations at specific base steps within the Exd binding site. We find that allosteric modulation of DNA structure contributes nearly 1.5 kcal/mol to the binding of Exd to DNA, even in the absence of direct Hox contacts. In contrast to previous studies, the sequence-targeted chemical wedges reveal the role of DNA geometry in cooperative assembly of Hox-Exd complexes. Programmable polyamides may well serve as general probes to investigate the role of DNA modulation in the cooperative and highly specific assembly of other protein-DNA complexes.

SUBMITTER: Moretti R 

PROVIDER: S-EPMC3060767 | biostudies-literature | 2008 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeted chemical wedges reveal the role of allosteric DNA modulation in protein-DNA assembly.

Moretti Rocco R   Donato Leslie J LJ   Brezinski Mary L ML   Stafford Ryan L RL   Hoff Helena H   Thorson Jon S JS   Dervan Peter B PB   Ansari Aseem Z AZ  

ACS chemical biology 20080401 4


The cooperative assembly of multiprotein complexes results from allosteric modulations of DNA structure as well as direct intermolecular contacts between proteins. Such cooperative binding plays a critical role in imparting exquisite sequence specificity on the homeobox transcription factor (Hox) family of developmental transcription factors. A well-characterized example includes the interaction of Hox proteins with extradenticle (Exd), a highly conserved DNA binding transcription factor. Althou  ...[more]

Similar Datasets

| S-EPMC3974644 | biostudies-literature
| S-EPMC4243843 | biostudies-literature
| S-EPMC2726366 | biostudies-literature
| S-EPMC3102551 | biostudies-literature
| S-EPMC5686564 | biostudies-literature
| S-EPMC5501961 | biostudies-literature
| S-EPMC2998434 | biostudies-literature
| S-EPMC6786047 | biostudies-literature
| S-EPMC4022858 | biostudies-literature
| S-EPMC7488283 | biostudies-literature