Unknown

Dataset Information

0

Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability.


ABSTRACT: Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the E?Myc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2(-/-) MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following ?-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in E?Myc lymphoma cells. In addition, casp2(-/-) MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage.

SUBMITTER: Dorstyn L 

PROVIDER: S-EPMC3392630 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability.

Dorstyn L L   Puccini J J   Wilson C H CH   Shalini S S   Nicola M M   Moore S S   Kumar S S  

Cell death and differentiation 20120413 8


Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EμMyc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic  ...[more]

Similar Datasets

| S-EPMC4408780 | biostudies-literature
| S-EPMC5788409 | biostudies-literature
| S-EPMC4024319 | biostudies-literature
| S-EPMC5129620 | biostudies-literature
| S-EPMC5412826 | biostudies-other
| S-EPMC4136655 | biostudies-literature
2021-03-11 | MSV000087036 | MassIVE
| S-EPMC6295172 | biostudies-literature
| S-EPMC2992260 | biostudies-other
| S-EPMC2643030 | biostudies-literature