Unknown

Dataset Information

0

Suppression of antifolate resistance by targeting the myosin Va trafficking pathway in melanoma.


ABSTRACT: Human melanoma is a significant clinical problem. As most melanoma patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is one of the highest priorities to improve melanoma therapy. Melanosomal sequestration and the cellular exportation of cytotoxic drugs have been proposed to be important melanoma-specific mechanisms that contribute to multidrug resistance in melanoma. Concretely, we found that treatment of melanoma with methotrexate (MTX) altered melanogenesis and accelerated the exportation of melanosomes; however, the cellular and molecular processes by which MTX is trapped into melanosomes and exported out of cells have not been elucidated. In this study, we identified myosin Va (MyoVa) as a possible mediator of these cellular processes. The results demonstrated that melanoma treatment with MTX leads to Akt2-dependent MyoVa phosphorylation, which enhances its ability to interact with melanosomes and accelerates their exportation. To understand the mechanism(s) by which MTX activates Akt2, we examined the effects of this drug on the activity of protein phosphatase 2A, an Akt inhibitor activated by the methylation of its catalytic subunit. Taken together, this study identified a novel trafficking pathway in melanoma that promotes tumor resistance through Akt2/MyoVa activation. Because of these findings, we explored several MTX combination therapies to increase the susceptibility of melanoma to this drug. By avoiding MTX exportation, we observed that the E2F1 apoptotic pathway is functional in melanoma, and its induction activates p73 and apoptosis protease-activating factor 1 following a p53-autonomous proapoptotic signaling event.

SUBMITTER: Fernandez-Perez MP 

PROVIDER: S-EPMC3689245 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Suppression of antifolate resistance by targeting the myosin Va trafficking pathway in melanoma.

Fernández-Pérez María Piedad MP   Montenegro María F MF   Sáez-Ayala Magalí M   Sánchez-del-Campo Luis L   Piñero-Madrona Antonio A   Cabezas-Herrera Juan J   Cabezas-Herrera Juan J   Rodríguez-López José Neptuno JN  

Neoplasia (New York, N.Y.) 20130701 7


Human melanoma is a significant clinical problem. As most melanoma patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is one of the highest priorities to improve melanoma therapy. Melanosomal sequestration and the cellular exportation of cytotoxic drugs have been proposed to be important melanoma-specific mechanisms that contribute to multidrug resistance in melanoma. Concretely, we found that treatment of melanoma with methotrexate (MTX)  ...[more]

Similar Datasets

| S-EPMC2773192 | biostudies-literature
| S-EPMC3258646 | biostudies-literature
| S-EPMC3613824 | biostudies-other
| S-EPMC8365777 | biostudies-literature
| S-EPMC6632970 | biostudies-literature
| S-EPMC3797558 | biostudies-other
| S-EPMC3759017 | biostudies-literature
| S-EPMC6395372 | biostudies-literature
| S-EPMC6488853 | biostudies-literature
| S-EPMC5719429 | biostudies-literature