Cobinamide production of hydrogen in a homogeneous aqueous photochemical system, and assembly and photoreduction in a (??)8 protein.
Ontology highlight
ABSTRACT: Components of a protein-integrated, earth-abundant metal macrocycle catalyst, with the purpose of H2 production from aqueous protons under green conditions, are characterized. The cobalt-corrin complex, cobinamide, is demonstrated to produce H2 (4.4 ± 1.8 × 10(-3) turnover number per hour) in a homogeneous, photosensitizer/sacrificial electron donor system in pure water at neutral pH. Turnover is proposed to be limited by the relatively low population of the gateway cobalt(III) hydride species. A heterolytic mechanism for H2 production from the cobalt(II) hydride is proposed. Two essential requirements for assembly of a functional protein-catalyst complex are demonstrated for interaction of cobinamide with the (??)8 TIM barrel protein, EutB, from the adenosylcobalamin-dependent ethanolamine ammonia lyase from Salmonella typhimurium: (1) high-affinity equilibrium binding of the cobinamide (dissociation constant 2.1 × 10(-7) M) and (2) in situ photoreduction of the cobinamide-protein complex to the Co(I) state. Molecular modeling of the cobinamide-EutB interaction shows that these features arise from specific hydrogen-bond and apolar interactions of the protein with the alkylamide substituents and the ring of the corrin, and accessibility of the binding site to the solution. The results establish cobinamide-EutB as a platform for design and engineering of a robust H2 production metallocatalyst that operates under green conditions and uses the advantages of the protein as a tunable medium and material support.
SUBMITTER: Robertson WD
PROVIDER: S-EPMC3737076 | biostudies-literature | 2013 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA