Unknown

Dataset Information

0

Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.


ABSTRACT: We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 ?m SiN membrane and 79 pW/(Hz)(1/2) for a 1 ?m polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH.

SUBMITTER: Lubbers B 

PROVIDER: S-EPMC3737424 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.

Lubbers Brad B   Baudenbacher Franz F  

Analytical chemistry 20110926 20


We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a funct  ...[more]

Similar Datasets

| S-EPMC3886389 | biostudies-literature
| S-EPMC2812830 | biostudies-literature
| S-EPMC7324066 | biostudies-literature
| S-EPMC4669061 | biostudies-literature
| S-EPMC6136728 | biostudies-literature
| S-EPMC509194 | biostudies-literature
| S-EPMC3389189 | biostudies-literature
| S-EPMC7604385 | biostudies-literature
| S-EPMC5832847 | biostudies-other
| S-EPMC3526666 | biostudies-literature