Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXR? expression and cholesterol homeostasis.
Ontology highlight
ABSTRACT: Aberrant regulation of cholesterol homeostasis is associated with obesity as well as multiple types of cancer. However, the mechanism behind these is largely missing. Here, we show that microRNA (miRNA)-128-2 is not only a pro-apoptotic microRNA but it also alters the expression of genes involved in cellular cholesterol homeostasis. Cholesterol efflux via ATP-binding cassette transporters (ABCA1 and ABCG1) is a mechanism for cells to eliminate excess cholesterol and prevent cellular cholesterol accumulation. The regulation of these pathways is complex with transcriptional regulation by sterol-regulatory element-binding protein (SREBP) and liver X receptor/retinoid X receptor (RXR) transcription factors but poorly understood at the post-transcriptional levels. MiR-128-2 increases the expression of SREBP2 and decreases the expression of SREBP1 in HepG2, MCF7 and HEK293T cells independent of sirtuin 1 (SIRT1) status. MiR-128-2 inhibits the expression of ABCA1, ABCG1 and RXR? directly through a miR-128-2-binding site within their respective 3'untranslated regions. The administration of miR-128-2 leads to decline in the protein and mRNA levels of ABCA1, ABCG1 and RXR?. Conversely, anti-miRNA treatment leads to increased ABCA1, ABCG1 and RXR? expression. The inverse correlation between miR-128-2 and its targets viz. ABCA1 and ABCG1 was also established during high-fat diet in different mice tissues. Our data show that cholesterol efflux is attenuated by miR-128-2 overexpression and, conversely, stimulated by miR-128-2 silencing. Further, we also observed the induction of ER stress response by miR-128-2. In this study, we provide the first evidence of miR-128-2 to be a new regulator of cholesterol homeostasis. Our study shows dual role of miR-128-2, as a pro-apoptotic molecule as well as a regulator of cholesterol homeostasis.
SUBMITTER: Adlakha YK
PROVIDER: S-EPMC3763462 | biostudies-literature | 2013 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA