Unknown

Dataset Information

0

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements.


ABSTRACT: X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1-4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.

SUBMITTER: Barty A 

PROVIDER: S-EPMC3783007 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements.

Barty Anton A   Caleman Carl C   Aquila Andrew A   Timneanu Nicusor N   Lomb Lukas L   White Thomas A TA   Andreasson Jakob J   Arnlund David D   Bajt Saša S   Barends Thomas R M TR   Barthelmess Miriam M   Bogan Michael J MJ   Bostedt Christoph C   Bozek John D JD   Coffee Ryan R   Coppola Nicola N   Davidsson Jan J   Deponte Daniel P DP   Doak R Bruce RB   Ekeberg Tomas T   Elser Veit V   Epp Sascha W SW   Erk Benjamin B   Fleckenstein Holger H   Foucar Lutz L   Fromme Petra P   Graafsma Heinz H   Gumprecht Lars L   Hajdu Janos J   Hampton Christina Y CY   Hartmann Robert R   Hartmann Andreas A   Hauser Günter G   Hirsemann Helmut H   Holl Peter P   Hunter Mark S MS   Johansson Linda L   Kassemeyer Stephan S   Kimmel Nils N   Kirian Richard A RA   Liang Mengning M   Maia Filipe R N C FR   Malmerberg Erik E   Marchesini Stefano S   Martin Andrew V AV   Nass Karol K   Neutze Richard R   Reich Christian C   Rolles Daniel D   Rudek Benedikt B   Rudenko Artem A   Scott Howard H   Schlichting Ilme I   Schulz Joachim J   Seibert M Marvin MM   Shoeman Robert L RL   Sierra Raymond G RG   Soltau Heike H   Spence John C H JC   Stellato Francesco F   Stern Stephan S   Strüder Lothar L   Ullrich Joachim J   Wang X X   Weidenspointner Georg G   Weierstall Uwe U   Wunderer Cornelia B CB   Chapman Henry N HN  

Nature photonics 20120101


X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis<sup>1</sup>. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information<sup>1-4</sup>. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ra  ...[more]

Similar Datasets

| S-EPMC3429598 | biostudies-literature
| S-EPMC4038330 | biostudies-literature
| S-EPMC8770144 | biostudies-literature
| S-EPMC4062087 | biostudies-literature
| S-EPMC4711640 | biostudies-literature
| S-EPMC6042073 | biostudies-literature
| S-EPMC4775161 | biostudies-literature
| S-EPMC3382516 | biostudies-literature
| S-EPMC4853777 | biostudies-literature
| S-EPMC4711619 | biostudies-literature