Unknown

Dataset Information

0

Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding.


ABSTRACT: Retroviruses favor target-DNA (tDNA) distortion and particular bases at sites of integration, but the mechanism underlying HIV-1 selectivity is unknown. Crystal structures revealed a network of prototype foamy virus (PFV) integrase residues that distort tDNA: Ala188 and Arg329 interact with tDNA bases, while Arg362 contacts the phosphodiester backbone. HIV-1 integrase residues Ser119, Arg231, and Lys258 were identified here as analogs of PFV integrase residues Ala188, Arg329 and Arg362, respectively. Thirteen integrase mutations were analyzed for effects on integrase activity in vitro and during virus infection, yielding a total of 1610 unique HIV-1 integration sites. Purine (R)/pyrimidine (Y) dinucleotide sequence analysis revealed HIV-1 prefers the tDNA signature (0)RYXRY(4), which accordingly favors overlapping flexible dinucleotides at the center of the integration site. Consistent with roles for Arg231 and Lys258 in sequence specific and non-specific binding, respectively, the R231E mutation altered integration site nucleotide preferences while K258E had no effect. S119A and S119T integrase mutations significantly altered base preferences at positions -3 and 7 from the site of viral DNA joining. The S119A preference moreover mimicked wild-type PFV selectivity at these positions. We conclude that HIV-1 IN residue Ser119 and PFV IN residue Ala188 contact analogous tDNA bases to effect virus integration.

SUBMITTER: Serrao E 

PROVIDER: S-EPMC4005685 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding.

Serrao Erik E   Krishnan Lavanya L   Shun Ming-Chieh MC   Li Xiang X   Cherepanov Peter P   Engelman Alan A   Maertens Goedele N GN  

Nucleic acids research 20140211 8


Retroviruses favor target-DNA (tDNA) distortion and particular bases at sites of integration, but the mechanism underlying HIV-1 selectivity is unknown. Crystal structures revealed a network of prototype foamy virus (PFV) integrase residues that distort tDNA: Ala188 and Arg329 interact with tDNA bases, while Arg362 contacts the phosphodiester backbone. HIV-1 integrase residues Ser119, Arg231, and Lys258 were identified here as analogs of PFV integrase residues Ala188, Arg329 and Arg362, respecti  ...[more]

Similar Datasets

| S-EPMC7680127 | biostudies-literature
| S-EPMC509299 | biostudies-literature
| S-EPMC2853025 | biostudies-literature
| S-EPMC4310495 | biostudies-literature
| S-EPMC1664696 | biostudies-literature
| S-EPMC1087937 | biostudies-literature
| S-EPMC8050864 | biostudies-literature
| S-EPMC3624274 | biostudies-literature
| S-EPMC3844521 | biostudies-literature
| S-EPMC2738233 | biostudies-literature