Unknown

Dataset Information

0

Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.


ABSTRACT: Individuals with naturally occurring loss-of-function proprotein convertase subtilisin/kexin type 9 (PCSK9) mutations experience reduced low-density lipoprotein cholesterol levels and protection against cardiovascular disease.The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system can efficiently introduce loss-of-function mutations into the endogenous PCSK9 gene in vivo.We used adenovirus to express CRISPR-associated 9 and a CRISPR guide RNA targeting Pcsk9 in mouse liver, where the gene is specifically expressed. We found that <3 to 4 days of administration of the virus, the mutagenesis rate of Pcsk9 in the liver was as high as >50%. This resulted in decreased plasma PCSK9 levels, increased hepatic low-density lipoprotein receptor levels, and decreased plasma cholesterol levels (by 35-40%). No off-target mutagenesis was detected in 10 selected sites.Genome editing with the CRISPR-CRISPR-associated 9 system disrupts the Pcsk9 gene in vivo with high efficiency and reduces blood cholesterol levels in mice. This approach may have therapeutic potential for the prevention of cardiovascular disease in humans.

SUBMITTER: Ding Q 

PROVIDER: S-EPMC4134749 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.

Ding Qiurong Q   Strong Alanna A   Patel Kevin M KM   Ng Sze-Ling SL   Gosis Bridget S BS   Regan Stephanie N SN   Cowan Chad A CA   Rader Daniel J DJ   Musunuru Kiran K  

Circulation research 20140610 5


<h4>Rationale</h4>Individuals with naturally occurring loss-of-function proprotein convertase subtilisin/kexin type 9 (PCSK9) mutations experience reduced low-density lipoprotein cholesterol levels and protection against cardiovascular disease.<h4>Objective</h4>The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system can efficiently introduce loss-of-function mutations into the endogenous PCSK9  ...[more]

Similar Datasets

| S-EPMC4390466 | biostudies-literature
| S-EPMC7035593 | biostudies-literature
| S-EPMC6450418 | biostudies-literature
| S-EPMC5331785 | biostudies-literature
| S-EPMC10018374 | biostudies-literature
| S-EPMC4302896 | biostudies-other
| S-EPMC5116081 | biostudies-other
| S-EPMC4978904 | biostudies-other
| S-EPMC4697396 | biostudies-other
| S-EPMC5796662 | biostudies-literature