Unknown

Dataset Information

0

Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.


ABSTRACT: CRISPR drives prokaryotic adaptation to invasive nucleic acids such as phages and plasmids, using an RNA-mediated interference mechanism. Interference in type I CRISPR-Cas systems requires a targeting Cascade complex and a degradation machine, Cas3, which contains both nuclease and helicase activities. Here we report the crystal structures of Thermobifida fusca Cas3 bound to single-stranded (ss) DNA substrate and show that it is an obligate 3'-to-5' ssDNase that preferentially accepts substrate directly from the helicase moiety. Conserved residues in the HD-type nuclease coordinate two irons for ssDNA cleavage. We demonstrate ATP coordination and conformational flexibility of the SF2-type helicase domain. Cas3 is specifically guided toward Cascade-bound target DNA by a PAM sequence, through physical interactions with both the nontarget substrate strand and the CasA protein. The sequence of recognition events ensures well-controlled DNA targeting and degradation of foreign DNA by Cascade and Cas3.

SUBMITTER: Huo Y 

PROVIDER: S-EPMC4156918 | biostudies-literature | 2014 Sep

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3372689 | biostudies-literature
| S-EPMC6537108 | biostudies-literature
| PRJEB13999 | ENA
| S-EPMC4020112 | biostudies-literature
| S-EPMC4246338 | biostudies-literature
| S-EPMC5815893 | biostudies-literature
| S-EPMC5714204 | biostudies-literature
| S-EPMC7611934 | biostudies-literature
| S-EPMC6086726 | biostudies-literature
| S-EPMC3984625 | biostudies-literature