A functional screen identifies miRs that induce radioresistance in glioblastomas.
Ontology highlight
ABSTRACT: The efficacy of radiotherapy in many tumor types is limited by normal tissue toxicity and by intrinsic or acquired radioresistance. Therefore, it is essential to understand the molecular network responsible for regulating radiosensitivity/resistance. Here, an unbiased functional screen identified four microRNAs (miR1, miR125a, miR150, and miR425) that induce radioresistance. Considering the clinical importance of radiotherapy for patients with glioblastoma, the impact of these miRNAs on glioblastoma radioresistance was investigated. Overexpression of miR1, miR125a, miR150, and/or miR425 in glioblastoma promotes radioresistance through upregulation of the cell-cycle checkpoint response. Conversely, antagonizing with antagomiRs sensitizes glioblastoma cells to irradiation, suggesting their potential as targets for inhibiting therapeutic resistance. Analysis of glioblastoma datasets from The Cancer Genome Atlas (TCGA) revealed that these miRNAs are expressed in glioblastoma patient specimens and correlate with TGF? signaling. Finally, it is demonstrated that expression of miR1 and miR125a can be induced by TGF? and antagonized by a TGF? receptor inhibitor. Together, these results identify and characterize a new role for miR425, miR1, miR125, and miR150 in promoting radioresistance in glioblastomas and provide insight into the therapeutic application of TGF? inhibitors in radiotherapy.Systematic identification of miRs that cause radioresistance in gliomas is important for uncovering predictive markers for radiotherapy or targets for overcoming radioresistance.
SUBMITTER: Moskwa P
PROVIDER: S-EPMC4386891 | biostudies-literature | 2014 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA