Unknown

Dataset Information

0

Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors.


ABSTRACT: Next-generation sequencing (NGS) of human bladder cancer has revealed many gene alterations compared with normal tissue, with most being predicted to be "loss of function." However, given the high number of alterations, evaluating the functional impact of each is impractical. Here, we develop and use a high-throughput, in vivo strategy to determine which alterations are loss of function in tumor growth suppressors. Genes reported as altered by NGS in bladder cancer patients were bioinformatically processed by MutationTaster and MutationAssessor, with 283 predicted as loss of function. An shRNA lentiviral library targeting these genes was transduced into T24 cells, a nontumorigenic human bladder cancer cell line, followed by injection into mice. Tumors that arose were sequenced and the dominant shRNA constructs were found to target IQGAP1, SAMD9L, PCIF1, MED1, and KATNAL1 genes. In vitro validation experiments revealed that shRNA molecules directed at IQGAP1 showed the most profound increase in anchorage-independent growth of T24 cells. The clinical relevance of IQGAP1 as a tumor growth suppressor is supported by the finding that its expression is lower in bladder cancer compared with benign patient urothelium in multiple independent datasets. Lower IQGAP1 protein expression associated with higher tumor grade and decreased patient survival. Finally, depletion of IQGAP1 leads to increased TGFBR2 with TGF? signaling, explaining in part how reduced IQGAP1 promotes tumor growth. These findings suggest IQGAP1 is a bladder tumor growth suppressor that works via modulating TGF? signaling and is a potentially clinically useful biomarker.This study used gene mutation information from patient-derived bladder tumor specimens to inform the development of a screen used to identify novel tumor growth suppressors. This included identification of the protein IQGAP1 as a potent bladder cancer growth suppressor.

SUBMITTER: Hensel J 

PROVIDER: S-EPMC4573363 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors.

Hensel Jonathan J   Duex Jason E JE   Owens Charles C   Dancik Garrett M GM   Edwards Michael G MG   Frierson Henry F HF   Theodorescu Dan D  

Molecular cancer research : MCR 20150615 9


<h4>Unlabelled</h4>Next-generation sequencing (NGS) of human bladder cancer has revealed many gene alterations compared with normal tissue, with most being predicted to be "loss of function." However, given the high number of alterations, evaluating the functional impact of each is impractical. Here, we develop and use a high-throughput, in vivo strategy to determine which alterations are loss of function in tumor growth suppressors. Genes reported as altered by NGS in bladder cancer patients we  ...[more]

Similar Datasets

| S-EPMC5159885 | biostudies-literature
| S-EPMC3594263 | biostudies-literature
| S-EPMC2990916 | biostudies-literature
| S-EPMC4867126 | biostudies-literature
| S-EPMC6934601 | biostudies-literature
| S-EPMC7467006 | biostudies-literature
| S-EPMC4140590 | biostudies-other
| S-EPMC5021030 | biostudies-literature
| S-EPMC4184919 | biostudies-literature
| S-ECPF-GEOD-47095 | biostudies-other