Unknown

Dataset Information

0

Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states.


ABSTRACT: BACKGROUND:Tissue infiltration by neutrophils during acute inflammatory states causes substantial tissue injury. While the magnitude of tissue neutrophil accumulation in innate immune responses is profoundly greater in males than females, fundamental aspects of the molecular mechanisms underlying these sex differences remain largely unknown. METHODS:We investigated sex differences in neutrophil stimulation and recruitment in ischemia/reperfusion (I/R; mesenteric or renal) or carrageenan pleurisy in rats or mice, as well as skin injury in human volunteers. The induction of potent chemoattractive mediators (chemokines) and neutrophil adhesion molecules were measured by real-time PCR, flow cytometry, and protein assays. RESULTS:Mesenteric I/R in age-matched Wistar rats resulted in substantially more neutrophil accumulation and tissue injury at 2 h reperfusion in males than females. Using intravital microscopy, we show that the immediate (<30 min) neutrophil response to I/R is similar in males and females but that prolonged neutrophil recruitment occurs in males at sites local and distal to inflammatory insult partly due to an increase in circulating neutrophil populations with elevated surface expression of adhesion molecules. Sex differences in neutrophil kinetics were correlated with sustained induction of chemokine Cxcl5 in the tissue, circulation, and bone marrow of males but not females. Furthermore, blockade of Cxcl5 in males prior to ischemia resulted in neutrophil responses that were similar in magnitude to those in females. Conversely, administration of Cxcl5 to males in the absence of I/R was sufficient to increase levels of systemic neutrophils. Cxcl5 treatment of bone marrow neutrophils in vitro caused substantial induction of neutrophil-mobilizing cytokine granulocyte colony-stimulating factor (GCSF) and expression of ?2 integrin that accounts for sexual dimorphism in circulating neutrophil populations in I/R. Moreover, male Cxcl5-stimulated bone marrow neutrophils had an increased capacity to adhere to ?2 integrin ligand ICAM-1, implicating a greater sensitivity of male leukocytes to Cxcl5-mediated activation. Differential induction of Cxcl5 (human CXCL6) between the sexes was also evident in murine renal I/R, rat pleurisy, and human skin blisters and correlated with the magnitude of neutrophil accumulation in tissues. CONCLUSIONS:Our study reveals that sex-specific induction of chemokine Cxcl5/CXCL6 contributes to sexual dimorphism in neutrophil recruitment in diverse acute inflammatory responses partly due to increased stimulation and trafficking of bone marrow neutrophils in males.

SUBMITTER: Madalli S 

PROVIDER: S-EPMC4661984 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states.

Madalli Shimona S   Beyrau Martina M   Whiteford James J   Duchene Johan J   Singh Nandhra Inderpal I   Patel Nimesh S A NS   Motwani Madhur P MP   Gilroy Derek W DW   Thiemermann Christoph C   Nourshargh Sussan S   Scotland Ramona S RS  

Biology of sex differences 20151126


<h4>Background</h4>Tissue infiltration by neutrophils during acute inflammatory states causes substantial tissue injury. While the magnitude of tissue neutrophil accumulation in innate immune responses is profoundly greater in males than females, fundamental aspects of the molecular mechanisms underlying these sex differences remain largely unknown.<h4>Methods</h4>We investigated sex differences in neutrophil stimulation and recruitment in ischemia/reperfusion (I/R; mesenteric or renal) or carra  ...[more]

Similar Datasets

| S-EPMC4279732 | biostudies-literature
2014-09-02 | E-GEOD-43337 | biostudies-arrayexpress
| S-EPMC3155777 | biostudies-literature
| S-EPMC3290428 | biostudies-literature
2014-09-02 | GSE43337 | GEO
| S-EPMC6590451 | biostudies-literature
| S-EPMC7065879 | biostudies-literature
| S-EPMC5457506 | biostudies-literature
| S-EPMC7918626 | biostudies-literature
| S-EPMC7644964 | biostudies-literature