Unknown

Dataset Information

0

A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.


ABSTRACT: The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function.

SUBMITTER: Nelp MT 

PROVIDER: S-EPMC4767005 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.

Nelp Micah T MT   Bandarian Vahe V  

Angewandte Chemie (International ed. in English) 20150717 36


The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered ami  ...[more]

Similar Datasets

| S-EPMC8725990 | biostudies-literature
| S-EPMC3800499 | biostudies-literature
| S-EPMC8397423 | biostudies-literature
| S-EPMC2518966 | biostudies-literature
| S-EPMC5086568 | biostudies-literature
| S-EPMC3950479 | biostudies-literature
| S-EPMC4499250 | biostudies-literature
| S-EPMC6549523 | biostudies-literature
| S-EPMC7305404 | biostudies-literature
| S-EPMC6692525 | biostudies-literature