Unknown

Dataset Information

0

Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.


ABSTRACT: The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation.

SUBMITTER: Czikora A 

PROVIDER: S-EPMC4900263 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.

Czikora Agnes A   Lundberg Daniel J DJ   Abramovitz Adelle A   Lewin Nancy E NE   Kedei Noemi N   Peach Megan L ML   Zhou Xiaoling X   Merritt Raymond C RC   Craft Elizabeth A EA   Braun Derek C DC   Blumberg Peter M PM  

The Journal of biological chemistry 20160328 21


The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7),  ...[more]

Similar Datasets

| S-EPMC3340006 | biostudies-literature
| S-EPMC3370188 | biostudies-literature
| S-EPMC2654222 | biostudies-literature
| S-EPMC3003069 | biostudies-literature
| S-EPMC2910545 | biostudies-literature
| S-EPMC8251786 | biostudies-literature
| S-EPMC3690838 | biostudies-literature
| S-EPMC4357511 | biostudies-literature
| S-EPMC86116 | biostudies-literature
| S-EPMC5678326 | biostudies-literature