Unknown

Dataset Information

0

Protein Kinase CK2 Controls the Fate between Th17 Cell and Regulatory T Cell Differentiation.


ABSTRACT: CK2 is a highly conserved and pleiotropic serine/threonine kinase that promotes many prosurvival and proinflammatory signaling pathways, including PI3K/Akt/mTOR and JAK/STAT. These pathways are essential for CD4+ T cell activation and polarization, but little is known about how CK2 functions in T cells. In this article, we demonstrate that CK2 expression and kinase activity are induced upon CD4+ T cell activation. Targeting the catalytic activity of CK2 using the next-generation small molecule inhibitor CX-4945 in vitro significantly and specifically inhibited mouse and human Th17 cell differentiation while promoting the generation of Foxp3+ regulatory T cells (Tregs). These findings were associated with suppression of PI3K/Akt/mTOR activation and STAT3 phosphorylation upon CX-4945 treatment. Furthermore, we demonstrate that CX-4945 treatment inhibits the maturation of Th17 cells into inflammatory IFN-?-coproducing effector cells. The Th17/Treg axis and maturation of Th17 cells are major contributing factors to the pathogenesis of many autoimmune disorders, including multiple sclerosis. Using a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrate that in vivo administration of CX-4945 targets Akt/mTOR signaling in CD4+ T cells and the Th17/Treg axis throughout disease. Importantly, CX-4945 treatment after disease initiation significantly reduced disease severity, which was associated with a significant decrease in the frequency of pathogenic IFN-?+ and GM-CSF+ Th17 cells in the CNS. Our data implicate CK2 as a regulator of the Th17/Treg axis and Th17 cell maturation and suggest that CK2 could be targeted for the treatment of Th17 cell-driven autoimmune disorders.

SUBMITTER: Gibson SA 

PROVIDER: S-EPMC5512439 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein Kinase CK2 Controls the Fate between Th17 Cell and Regulatory T Cell Differentiation.

Gibson Sara A SA   Yang Wei W   Yan Zhaoqi Z   Liu Yudong Y   Rowse Amber L AL   Weinmann Amy S AS   Qin Hongwei H   Benveniste Etty N EN  

Journal of immunology (Baltimore, Md. : 1950) 20170503 11


CK2 is a highly conserved and pleiotropic serine/threonine kinase that promotes many prosurvival and proinflammatory signaling pathways, including PI3K/Akt/mTOR and JAK/STAT. These pathways are essential for CD4<sup>+</sup> T cell activation and polarization, but little is known about how CK2 functions in T cells. In this article, we demonstrate that CK2 expression and kinase activity are induced upon CD4<sup>+</sup> T cell activation. Targeting the catalytic activity of CK2 using the next-gener  ...[more]

Similar Datasets

2017-05-05 | GSE86976 | GEO
| S-EPMC5018788 | biostudies-other
| S-EPMC8323969 | biostudies-literature
| S-EPMC5374431 | biostudies-literature
| S-EPMC3637864 | biostudies-literature
| S-EPMC9492634 | biostudies-literature
| S-EPMC5374425 | biostudies-literature
| S-EPMC7676685 | biostudies-literature
| S-EPMC7382987 | biostudies-literature
| S-EPMC387775 | biostudies-literature