Unknown

Dataset Information

0

Chimpanzees spontaneously take turns in a shared serial ordering task.


ABSTRACT: Social coordination can provide optimal solutions to many kinds of group dilemmas, and non-human subjects have been shown to perform single actions successively or simultaneously with partners to maximize food rewards in a variety of experimental settings. Less attention has been given to showing how animals are able to produce multiple (rather than single) intermixed and co-regulated actions, even though many species' signal transmissions and social interactions rely on extended bouts of coordinated turn-taking. Here we report on coordination behaviour in three pairs of chimpanzees (mother/offspring dyads) during an experimentally induced turn-taking scenario. Participants were given a "shared" version of a computer-based serial ordering task that they had previously mastered individually. We found that minimal trial-and-error learning was necessary for the participants to solve the new social version of the task, and that information flow was more pronounced from mothers toward offspring than the reverse, mirroring characteristics of social learning in wild chimpanzees. Our experiment introduces a novel paradigm for studying behavioural coordination in non-humans, able to yield insights into the evolution of turn-taking which underlies a range of social interactions, including communication and language.

SUBMITTER: Martin CF 

PROVIDER: S-EPMC5665892 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chimpanzees spontaneously take turns in a shared serial ordering task.

Martin Christopher Flynn CF   Biro Dora D   Matsuzawa Tetsuro T  

Scientific reports 20171101 1


Social coordination can provide optimal solutions to many kinds of group dilemmas, and non-human subjects have been shown to perform single actions successively or simultaneously with partners to maximize food rewards in a variety of experimental settings. Less attention has been given to showing how animals are able to produce multiple (rather than single) intermixed and co-regulated actions, even though many species' signal transmissions and social interactions rely on extended bouts of coordi  ...[more]

Similar Datasets

| S-EPMC6527849 | biostudies-other
| S-EPMC6969499 | biostudies-literature
| S-EPMC4156467 | biostudies-literature
| S-EPMC4256775 | biostudies-literature
| S-EPMC5577499 | biostudies-literature
| S-EPMC2367391 | biostudies-other
| S-EPMC3612375 | biostudies-literature
| S-EPMC3193283 | biostudies-literature
| S-EPMC9125839 | biostudies-literature
| S-EPMC4106193 | biostudies-literature