Unknown

Dataset Information

0

A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance.


ABSTRACT: During the hours that human cells spend in the DNA synthesis (S) phase of the cell cycle, they may encounter adversities such as DNA damage or shortage of nucleotides. Under these stresses, replication forks in DNA may experience slowing, stalling, and breakage. Fork remodeling mechanisms, which stabilize slow or stalled replication forks and ensure their ability to continue or resume replication, protect cells from genomic instability and carcinogenesis. Fork remodeling includes DNA strand exchanges that result in annealing of newly synthesized strands (fork reversal), controlled DNA resection, and cleavage of DNA strands. Defects in major tumor suppressor genes BRCA1 and BRCA2, and a subset of the Fanconi Anemia genes have been shown to result in deregulation in fork remodeling, and most prominently, loss of kilobases of nascent DNA from stalled replication forks. This phenomenon has recently gained spotlight as a potential marker and mediator of chemo-sensitivity in cancer cells and, conversely, its suppression - as a hallmark of acquired chemo-resistance. Moreover, nascent strand degradation at forks is now known to also trigger innate immune response to self-DNA. An increasingly sophisticated molecular description of these events now points at a combination of unbalanced fork reversal and end-resection as a root cause, yet also reveals the multi-layered complexity and heterogeneity of the underlying processes in normal and cancer cells.

SUBMITTER: Sidorova J 

PROVIDER: S-EPMC5771654 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance.

Sidorova Julia J  

Cell stress 20171205 3


During the hours that human cells spend in the DNA synthesis (S) phase of the cell cycle, they may encounter adversities such as DNA damage or shortage of nucleotides. Under these stresses, replication forks in DNA may experience slowing, stalling, and breakage. Fork remodeling mechanisms, which stabilize slow or stalled replication forks and ensure their ability to continue or resume replication, protect cells from genomic instability and carcinogenesis. Fork remodeling includes DNA strand exch  ...[more]

Similar Datasets

| S-EPMC7673757 | biostudies-literature
| S-EPMC5588928 | biostudies-literature
| S-EPMC10858868 | biostudies-literature
| S-EPMC2727422 | biostudies-literature
| S-EPMC5686578 | biostudies-literature
| S-EPMC6650494 | biostudies-literature
| S-EPMC9177969 | biostudies-literature
| S-EPMC10290672 | biostudies-literature
| S-EPMC4613663 | biostudies-literature
| S-EPMC6134005 | biostudies-literature