Unknown

Dataset Information

0

Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc.


ABSTRACT: Cells derived by cellular engineering, i.e. differentiation of induced pluripotent stem cells and direct lineage reprogramming, carry a tremendous potential for medical applications and in particular for regenerative therapies. These approaches consist in the definition of lineage-specific experimental protocols that, by manipulation of a limited number of biological cues-niche mimicking factors, (in)activation of transcription factors, to name a few-enforce the final expression of cell-specific (marker) molecules. To date, given the intricate complexity of biological pathways, these approaches still present imperfect reprogramming fidelity, with uncertain consequences on the functional properties of the resulting cells.We propose a novel tool eegc to evaluate cellular engineering processes, in a systemic rather than marker-based fashion, by integrating transcriptome profiling and functional analysis. Our method clusters genes into categories representing different states of (trans)differentiation and further performs functional and gene regulatory network analyses for each of the categories of the engineered cells, thus offering practical indications on the potential lack of the reprogramming protocol.eegc R package is released under the GNU General Public License within the Bioconductor project, freely available at https://bioconductor.org/packages/eegc/.christine.nardini.rsrc@gmail.com or hongkang.k.mei@gsk.com.Supplementary data are available at Bioinformatics online.

SUBMITTER: Zhou X 

PROVIDER: S-EPMC5870561 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Systemic evaluation of cellular reprogramming processes exploiting a novel R-tool: eegc.

Zhou Xiaoyuan X   Meng Guofeng G   Nardini Christine C   Mei Hongkang H  

Bioinformatics (Oxford, England) 20170801 16


<h4>Motivation</h4>Cells derived by cellular engineering, i.e. differentiation of induced pluripotent stem cells and direct lineage reprogramming, carry a tremendous potential for medical applications and in particular for regenerative therapies. These approaches consist in the definition of lineage-specific experimental protocols that, by manipulation of a limited number of biological cues-niche mimicking factors, (in)activation of transcription factors, to name a few-enforce the final expressi  ...[more]

Similar Datasets

| S-EPMC5817226 | biostudies-literature
| S-EPMC5817205 | biostudies-literature
| S-EPMC7052490 | biostudies-literature
| S-EPMC6450436 | biostudies-literature
| S-EPMC5692574 | biostudies-literature
| S-EPMC5546717 | biostudies-other
| S-EPMC7528630 | biostudies-literature
| S-EPMC3942435 | biostudies-literature
| S-EPMC5278776 | biostudies-other
| S-EPMC3711057 | biostudies-literature