Crystal structures of tetra-kis-(pyridine-4-thio-amide-?N)bis-(thio-cyanato-?N)cobalt(II) monohydrate and bis-(pyridine-4-thio-amide-?N)bis-(thio-cyanato-?N)zinc(II).
Ontology highlight
ABSTRACT: Reaction of Co(NCS)2 and Zn(NCS)2 with 4-pyridine-thio-amide led to the formation of compounds with composition [Co(NCS)2(C6H6N2S)4]·H2O (1) and [Zn(NCS)2(C6H6N2S)2] (2), respectively. The asymmetric unit of compound 1, consists of one cobalt(II) cation, two thio-cyanate anions, four 4-pyridine-thio-amide ligands and one water mol-ecule whereas that of compound 2 comprises one zinc(II) cation that is located on a twofold rotation axis as well as one thio-cyanate anion and one 4-pyridine-thio-amide ligand in general positions. In the structure of compound 1, the cobalt(II) cations are octa-hedrally coordinated by two terminal N-bonding thio-cyanate anions and by the N atoms of four 4-pyridine-thio-amide ligands, resulting in discrete and slightly distorted octa-hedral complexes. These complexes are linked into a three-dimensional network via inter-molecular N-H?S hydrogen bonding between the amino H atoms and the thio-cyanate S atoms. From this arrangement, channels are formed in which the water mol-ecules are embedded and linked to the host structure by inter-molecular O-H?S and N-H?O hydrogen bonding. In the structure of compound 2, the zinc(II) cations are tetra-hedrally coordinated by two N-bonding thio-cyanate anions and the N atoms of two 4-pyridine-thio-amide ligands into discrete complexes. These complexes are likewise connected into a three-dimensional network by inter-molecular N-H?S hydrogen bonding between the amino H atoms and the thio-amide S atoms.
SUBMITTER: Neumann T
PROVIDER: S-EPMC5956324 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA