Sequential actions of phosphatidylinositol phosphates regulate phagosome-lysosome fusion.
Ontology highlight
ABSTRACT: Phagosomes mature into phagolysosomes by sequential fusion with early endosomes, late endosomes, and lysosomes. Phagosome-with-lysosome fusion (PLF) results in the delivery of lysosomal hydrolases into phagosomes and in digestion of the cargo. The machinery that drives PLF has been little investigated. Using a cell-free system, we recently identified the phosphoinositide lipids (PIPs) phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 4-phosphate (PI(4)P) as regulators of PLF. We now report the identification and the PIP requirements of four distinct subreactions of PLF. Our data show that (i) PI(3)P and PI(4)P are dispensable for the disassembly and activation of (phago)lysosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptors, that (ii) PI(3)P is required only after the tethering step, and that (iii) PI(4)P is required during and after tethering. Moreover, our data indicate that PI(4)P is needed to anchor Arl8 (Arf-like GTPase 8) and its effector homotypic fusion/vacuole protein sorting complex (HOPS) to (phago)lysosome membranes, whereas PI(3)P is required for membrane association of HOPS only. Our study provides a first link between PIPs and established regulators of membrane fusion in late endocytic trafficking.
SUBMITTER: Jeschke A
PROVIDER: S-EPMC6014173 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA