Unknown

Dataset Information

0

Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin.


ABSTRACT: The establishment of relative size of organs and structures is paramount for attaining final form and function of an organism. Importantly, variation in the proportions of structures frequently underlies adaptive change in morphology in evolution and maybe a common mechanism underlying selection. However, the mechanism by which growth is integrated within tissues during development to achieve proper proportionality is poorly understood. We have shown that signaling by potassium channels mediates coordinated size regulation in zebrafish fins. Recently, calcineurin inhibitors were shown to elicit changes in zebrafish fin allometry as well. Here, we identify the potassium channel kcnk5b as a key player in integrating calcineurin's growth effects, in part through regulation of the cytoplasmic C-terminus of the channel. We propose that the interaction between Kcnk5b and calcineurin acts as a signaling node to regulate allometric growth. Importantly, we find that this regulation is epistatic to inherent mechanisms instructing overall size as inhibition of calcineurin is able to bypass genetic instruction of size as seen in sof and wild-type fins, however, it is not sufficient to re-specify positional memory of size of the fin. These findings integrate classic signaling mediators such as calcineurin with ion channel function in the regulation of size and proportion during growth.

SUBMITTER: Daane JM 

PROVIDER: S-EPMC6039437 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin.

Daane Jacob M JM   Lanni Jennifer J   Rothenberg Ina I   Seebohm Guiscard G   Higdon Charles W CW   Johnson Stephen L SL   Harris Matthew P MP  

Scientific reports 20180710 1


The establishment of relative size of organs and structures is paramount for attaining final form and function of an organism. Importantly, variation in the proportions of structures frequently underlies adaptive change in morphology in evolution and maybe a common mechanism underlying selection. However, the mechanism by which growth is integrated within tissues during development to achieve proper proportionality is poorly understood. We have shown that signaling by potassium channels mediates  ...[more]

Similar Datasets

| S-EPMC3894163 | biostudies-literature
| S-EPMC3597208 | biostudies-literature
| S-EPMC4996968 | biostudies-literature
| S-EPMC7812827 | biostudies-literature
2020-10-20 | GSE159560 | GEO
| S-EPMC5596562 | biostudies-other
| S-EPMC7109522 | biostudies-literature
| S-EPMC3236601 | biostudies-literature
| S-EPMC3000987 | biostudies-literature
| S-EPMC6226199 | biostudies-literature