Production and purification of an alkaline lipase from Bacillus sp. for enantioselective resolution of (±)-Ketoprofen butyl ester.
Ontology highlight
ABSTRACT: The present study was conducted to purify lipase from indigenous Bacillus subtilis strain Kakrayal_1 (BSK-L) for enantioselective resolution of racemic-ketoprofen. The production of lipase (BSK-L) was optimized using Plackett-Burman and central composite design of response surface methodology (RSM). The optimized media containing olive oil (3.5%), MnSO4 (8 mM), CaCl2 (5 mM), peptone (20 g/l), pH (8), agitation (180 rpm) and temperature (37 °C) resulted in maximum lipase production of 7500 U/g of cell biomass. The lipase was purified using sequential method to an overall purification fold of 13% with 20% recovery, 882 U/mg specific activity and a molecular weight of 45 kDa. Optimal pH and temperature of purified lipase were found to be 8 and 37 °C, respectively. Furthermore, BSK-L displayed good stability with various organic solvents, surfactants and metal ions. K m and V max values of lipase were observed to be 2.2 mM and 6.67 mmoles of product formed/min/mg, respectively. The racemic ketoprofen butyl ester was hydrolyzed using lipase with 49% conversion efficiency and 69% enantiomeric excess (ee) which was superior to the commercially procured lipase (Candida antarctica lipase). Thus, this enzyme could be considered as a promising candidate for the pharmaceutical industry.
SUBMITTER: Saraswat R
PROVIDER: S-EPMC6242800 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA