Unknown

Dataset Information

0

Plasmid-based gap-repair recombineered transgenes reveal a central role for introns in mutually exclusive alternative splicing in Down Syndrome Cell Adhesion Molecule exon 4.


ABSTRACT: Alternative splicing is a key feature of human genes, yet studying its regulation is often complicated by large introns. The Down Syndrome Cell Adhesion Molecule (Dscam) gene from Drosophila is one of the most complex genes generating vast molecular diversity by mutually exclusive alternative splicing. To resolve how alternative splicing in Dscam is regulated, we first developed plasmid-based UAS reporter genes for the Dscam variable exon 4 cluster and show that its alternative splicing is recapitulated by GAL4-mediated expression in neurons. We then developed gap-repair recombineering to very efficiently manipulate these large reporter plasmids in Escherichia coli using restriction enzymes or sgRNA/Cas9 DNA scission to capitalize on the many benefits of plasmids in phiC31 integrase-mediated transgenesis. Using these novel tools, we show that inclusion of Dscam exon 4 variables differs little in development and individual flies, and is robustly determined by sequences harbored in variable exons. We further show that introns drive selection of both proximal and distal variable exons. Since exon 4 cluster introns lack conserved sequences that could mediate robust long-range base-pairing to bring exons into proximity for splicing, our data argue for a central role of introns in mutually exclusive alternative splicing of Dscam exon 4 cluster.

SUBMITTER: Haussmann IU 

PROVIDER: S-EPMC6379703 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Plasmid-based gap-repair recombineered transgenes reveal a central role for introns in mutually exclusive alternative splicing in Down Syndrome Cell Adhesion Molecule exon 4.

Haussmann Irmgard U IU   Ustaoglu Pinar P   Brauer Ulrike U   Hemani Yash Y   Dix Thomas C TC   Soller Matthias M  

Nucleic acids research 20190201 3


Alternative splicing is a key feature of human genes, yet studying its regulation is often complicated by large introns. The Down Syndrome Cell Adhesion Molecule (Dscam) gene from Drosophila is one of the most complex genes generating vast molecular diversity by mutually exclusive alternative splicing. To resolve how alternative splicing in Dscam is regulated, we first developed plasmid-based UAS reporter genes for the Dscam variable exon 4 cluster and show that its alternative splicing is recap  ...[more]

Similar Datasets

| S-EPMC7954323 | biostudies-literature
| S-EPMC5740500 | biostudies-literature
| S-EPMC3050534 | biostudies-literature
| S-EPMC1431710 | biostudies-literature
| S-EPMC4691838 | biostudies-literature
2018-11-19 | GSE115977 | GEO
| S-EPMC4165533 | biostudies-literature
| S-EPMC6572816 | biostudies-literature
| S-EPMC3498831 | biostudies-other
| S-EPMC48478 | biostudies-other