Unknown

Dataset Information

0

High-fidelity replication of thermoplastic microneedles with open microfluidic channels.


ABSTRACT: Development of microneedles for unskilled and painless collection of blood or drug delivery addresses the quality of healthcare through early intervention at point-of-care. Microneedles with submicron to millimeter features have been fabricated from materials such as metals, silicon, and polymers by subtractive machining or etching. However, to date, large-scale manufacture of hollow microneedles has been limited by the cost and complexity of microfabrication techniques. This paper reports a novel manufacturing method that may overcome the complexity of hollow microneedle fabrication. Prototype microneedles with open microfluidic channels are fabricated by laser stereolithography. Thermoplastic replicas are manufactured from these templates by soft-embossing with high fidelity at submicron resolution. The manufacturing advantages are (a) direct printing from computer-aided design (CAD) drawing without the constraints imposed by subtractive machining or etching processes, (b) high-fidelity replication of prototype geometries with multiple reuses of elastomeric molds, (c) shorter manufacturing time compared to three-dimensional stereolithography, and (d) integration of microneedles with open-channel microfluidics. Future work will address development of open-channel microfluidics for drug delivery, fluid sampling and analysis.

SUBMITTER: Faraji Rad Z 

PROVIDER: S-EPMC6445010 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-fidelity replication of thermoplastic microneedles with open microfluidic channels.

Faraji Rad Zahra Z   Nordon Robert E RE   Anthony Carl J CJ   Bilston Lynne L   Prewett Philip D PD   Arns Ji-Youn JY   Arns Christoph H CH   Zhang Liangchi L   Davies Graham J GJ  

Microsystems & nanoengineering 20171009


Development of microneedles for unskilled and painless collection of blood or drug delivery addresses the quality of healthcare through early intervention at point-of-care. Microneedles with submicron to millimeter features have been fabricated from materials such as metals, silicon, and polymers by subtractive machining or etching. However, to date, large-scale manufacture of hollow microneedles has been limited by the cost and complexity of microfabrication techniques. This paper reports a nov  ...[more]

Similar Datasets

| S-EPMC7289158 | biostudies-literature
| S-EPMC9080282 | biostudies-literature
| S-EPMC5300136 | biostudies-literature
| S-EPMC7463978 | biostudies-literature
| S-EPMC4256099 | biostudies-literature
| S-EPMC4305448 | biostudies-literature
| S-EPMC11291766 | biostudies-literature
| S-EPMC4614260 | biostudies-other
2023-03-30 | GSE228099 | GEO
| S-EPMC4019108 | biostudies-literature