Unknown

Dataset Information

0

Nitric oxide releasing poly(vinylidene fluoride-co-hexafluoropropylene) films using a fluorinated nitric oxide donor to greatly decrease chemical leaching.


ABSTRACT: Nitric oxide (NO) releasing polymers have been widely applied as biomaterials for a variety of biomedical implants and devices. However, the chemical leaching of NO donors and their byproduct species is almost always observed during the application of polymers doped with NO donors, unless the donor is covalently linked to the polymer. Herein, we report the first NO releasing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fluorinated copolymer prepared by incorporating a fluorinated S-nitrosothiol as the NO donor. Under physiological conditions, the resulting polymeric films can release NO for 16?days. Importantly, due to both fluorine-fluorine and electrostatic charge interactions between the fluorinated NO donor and the PVDF-HFP copolymer, the total chemical leaching of the fluorinated NO donor and its disulfide product after 9?day was only 0.6% (mol%) of the initial amount of NO donor loaded into the film. These new NO release PVDF-HFP films exhibit antimicrobial and anti-biofilm activities against both Gram positive S. aureus and Gram negative P. aeruginosa strains. The NO-releasing PVDF-HFP polymer can also be coated on Teflon tubing to release NO under physiological conditions for extended time periods. This NO-releasing PVDF-HFP copolymer with greatly reduced chemical leaching could help enhance the biocompatibility and antimicrobial activity of various biomedical devices. STATEMENT OF SIGNIFICANCE: Fluoropolymers have been widely used in creating various biomedical implants and devices. However, nitric oxide (NO) release fluoropolymers have not been well studied to date. Additionally, in the application of biomaterials doped with NO donors, a significant amount of NO donors and their byproducts almost always leach into aqueous environment. We now report an NO releasing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fluoropolymer by incorporating a new fluorinated S-nitrosothiol. The NO release can last for 16?days under physiological conditions. The total chemical leaching was determined to be only 0.6?mol% of the initial S-nitrosothiol loaded. As expected, significant antimicrobial/anti-biofilm activities of the NO release PVDF-HFP film were observed against Gram positive S. aureus and Gram negative P. aeruginosa bacterial strains.

SUBMITTER: Zhou Y 

PROVIDER: S-EPMC6513704 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6418575 | biostudies-literature
| S-EPMC5873022 | biostudies-literature
| S-EPMC10054789 | biostudies-literature
| S-EPMC6790977 | biostudies-literature
| S-EPMC6759059 | biostudies-literature
| S-EPMC8303348 | biostudies-literature
| S-EPMC4109794 | biostudies-literature
| S-EPMC3045468 | biostudies-literature
2007-12-31 | GSE5400 | GEO
2010-06-30 | E-GEOD-5400 | biostudies-arrayexpress