Protect, modify, deprotect (PMD): A strategy for creating vaccines to elicit antibodies targeting a specific epitope.
Ontology highlight
ABSTRACT: In creating vaccines against infectious agents, there is often a desire to direct an immune response toward a particular conformational epitope on an antigen. We present a method, called protect, modify, deprotect (PMD), to generate immunogenic proteins aimed to direct a vaccine-induced antibody (Ab) response toward an epitope defined by a specific monoclonal Ab (mAb). The mAb is used to protect the target epitope on the protein. Then the remaining exposed surfaces of the protein are modified to render them nonimmunogenic. Finally, the epitope is deprotected by removal of the mAb. The resultant protein is modified at surfaces other than the target epitope. We validate PMD using a well-characterized antigen, hen egg white lysozyme, then demonstrate the utility of PMD using influenza virus hemagglutinin (HA). We use an mAb to protect a highly conserved epitope on the stem domain of HA. Exposed surface amines are then modified with short polyethylene glycol chains. The resultant antigen shows markedly reduced binding to mAbs that target the head region of HA, while maintaining binding to mAbs at the epitope of interest. This antigenic preference is also observed with yeast cells displaying Ab fragments. Antisera from guinea pigs immunized with the PMD-modified HA show increased cross-reactivity with HAs from other influenza strains, compared with antisera obtained with unmodified HA trimers. PMD has the potential to direct an Ab response at high resolution and could be used in combination with other such strategies. There are many attractive targets for the application of PMD.
SUBMITTER: Weidenbacher PA
PROVIDER: S-EPMC6525525 | biostudies-literature | 2019 May
REPOSITORIES: biostudies-literature
ACCESS DATA