Unknown

Dataset Information

0

Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates.


ABSTRACT: Chiral cyclic sulfamidates are useful building blocks to construct compounds, such as chiral amines, with important applications. Often these compounds can only be generated through expensive precious metal catalysts. Here, Ni(OAc)2/(S, S)-Ph-BPE-catalyzed highly efficient asymmetric hydrogenation of cyclic sulfamidate imines was successfully developed, affording various chiral cyclic sulfamidates with high yields and excellent enantioselectivities (up to 99% yield, >99% enantiomeric excess [ee]). This Ni-catalyzed asymmetric hydrogenation on a gram scale has been achieved with only 0.1 mol% catalyst loading in 99% yield with 93% ee. Other types of N-sulfonyl ketimines were also hydrogenated well to obtain the corresponding products with >99% conversion, 96%-97% yields, and 97%->99% ee. In addition, this asymmetric methodology could produce other enantioenriched organic molecules, such as chiral ?-fluoroamine, amino ether, and phenylglycinol. Moreover, a reasonable catalytic cycle was provided according to the deuterium-labeling studies, which could reveal a possible mechanism for this Ni-catalyzed asymmetric hydrogenation.

SUBMITTER: Liu Y 

PROVIDER: S-EPMC6664198 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates.

Liu Yuanhua Y   Yi Zhiyuan Z   Tan Xuefeng X   Dong Xiu-Qin XQ   Zhang Xumu X  

iScience 20190704


Chiral cyclic sulfamidates are useful building blocks to construct compounds, such as chiral amines, with important applications. Often these compounds can only be generated through expensive precious metal catalysts. Here, Ni(OAc)<sub>2</sub>/(S, S)-Ph-BPE-catalyzed highly efficient asymmetric hydrogenation of cyclic sulfamidate imines was successfully developed, affording various chiral cyclic sulfamidates with high yields and excellent enantioselectivities (up to 99% yield, >99% enantiomeric  ...[more]

Similar Datasets

| S-EPMC5632792 | biostudies-literature
| S-EPMC2638762 | biostudies-literature
| S-EPMC5989712 | biostudies-literature
| S-EPMC6050576 | biostudies-literature
| S-EPMC5396509 | biostudies-literature
| S-EPMC8612400 | biostudies-literature
| S-EPMC5539537 | biostudies-literature